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Abstract

Various regularization methods have been introduced to improve the training of
deep neural networks and increase their generalization capability. In this paper,
we propose a novel structural regularization technique through imposing Positive
Semi-Definite (PSD) constraints on convolution kernels of deep Convolutional
Neural Networks (CNNs). We also introduce a proper initialization scheme for PSD
kernels. Our experiments on image classification benchmarks show that utilizing
PSD convolutions as a hard regularization constraint enhances the classification
accuracy and decreases the generalization gap of networks. We discuss how rank
constraints can be incorporated into PSD convolutions and study the effect of
such constraints on the number of parameters and network accuracy. We also
demonstrate that networks equipped with PSD convolutions are more robust to
adversarial attacks. Finally, we show how PSD constraints can also enhance the
optimization procedure for very deep networks.

1 Introduction

Successful training of deep neural networks is challenging since several issues and aspects should
be taken into consideration. The generalization capability, the robustness of the trained network to
adversarial input perturbation, and optimization efficiency are some of the most critical issues. Many
studies have focused on one or some of these properties and tried to achieve these goals. However,
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some aspects of training deep neural networks are still considered difficult, from both theoretical and
experimental points of view.

To enhance the generalization property, various techniques have already been proposed. Some
methods, e.g., drop-out and weight decay, can help but they adversely affect optimization efficiency
[21]. Batch Normalization [23] and skip connections [17] are examples of the most successful
methods introduced to address training issues. To relax the remaining difficulties of training deep
networks, a line of research that focuses on imposing structural regularization has received attention
in the past few years. Orthogonality of weight matrices is a structural constraint studied in [32, 15,
25, 31, 21, 24] for Recurrent Neural Networks (RNNs) and fully connected networks. More recently
imposing this constraint for CNNs has been addressed in [4, 36]. Symmetry of weights [19] is another
structural constraint introduced in recent years.

On the other hand, robustness of neural networks to adversarial attacks has received much attention
due to security implications. Several defenses against adversarial attacks, including regularization
techniques, have been proposed, e.g., in [27, 9, 13, 37, 7]. However, designing a network with both a
good generalization capability and a high level of robustness to attacks is still considered challenging.

In this paper, we propose Positive Semi-Definite (PSD) constraints as a structural regularization
method applied to convolution layers. We demonstrate that PSD convolution layers provide a proper
foundation for more appropriate initialization schemes. We also introduce a method of applying rank
constraints on PSD convolutions. Through experiments on image classification benchmarks, we show
that PSD convolutions enhance the classification accuracy and decrease the generalization gap. We
also discuss that by enforcing rank constraints on PSD convolutions, the number of parameters is
reduced, and at the same time, network accuracy is maintained. We demonstrate that CNNs equipped
with PSD convolutions exhibit higher robustness to adversarial attacks. Finally, we show that PSD
convolutions can enhance the optimization procedure of very deep networks.

1.1 Related works

Orthogonality of weight matrices is an example of structural regularization techniques. The paper
[4] introduces a regularization term in the loss function to penalize the distance of weights from
the Stiefel manifold, e.g., by penalizing for each weight matrix W , the distance between WWT

and I . Different soft orthogonality regularizations have been introduced in [4] and it is shown that
employing such methods results in faster and more stable convergence of training in ResNets.

Symmetric weight constraint is another example of structural regularization techniques. [19] has
introduced several methods of imposing symmetry on the weights of a CNN. Surprisingly, it is shown
that despite significantly decreasing the number of parameters, symmetry constraints have a small
adverse effect on the accuracy in deep networks.

Enforcing rank constraints as another structural regularization method has recieved much attention
in recent years [35, 22, 28]. Models based on these constraints are proved to be very effective
in reducing the number of parameters, speeding up training, and reducing storage and hardware
implementation requirements. Although these methods can maintain the generalization capability,
they are unable to enhance it.

Implicit regularization when minimizing an underdetermined quadratic function over a PSD matrix
X with gradient descent on a factorization of X has been studied in [14]. In this paper, in order to
solve the optimization problem minX<0 ||A(X)− y||22, where A : Rn×n → Rm is a linear operator
and y ∈ Rm, the matrix X is factorized as X = UUT with U ∈ Rn×d. It is shown that when d
is sufficiently large and m� n2, a global minima of the original problem is obtained by applying
gradient descent on U .

Appropriate initialization is a crucial part of training and can have significant effects on the outcome.
Thus, a large body of research has focused on the initialization of the weights. [16] generalizes
the idea of filter-size dependent initialization [11] for ReLU non-linearity, showing that VGGNets
[33] can be trained in a single optimization run. The initialization method introduced in [16] is also
applied in ResNets [17]. Orthogonal initialization [20] is another example of initialization methods.
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1.2 Our contributions

• We introduce PSD convolutions and propose an effective way of imposing PSD constraints
on convolution layers. PSD convolution can be utilized in various well-known CNN
architectures.

• An initialization method is presented for PSD convolutions that helps enforce the training
to start from a model with very low complexity and gradually become more complex. We
demonstrate the potential benefits of PSD weights and our initialization scheme for deeper
structures.

• We show that PSD convolutions remarkably enhance the generalization capability of well-
known CNN architectures in standard image classification benchmarks.

• We demonstrate that low-rank constraints can also be easily enforced on PSD convolution
layers to decrease the number of parameters. The low-ranked version achieves higher speed
and accuracy compared to the baselines on image classification benchmarks.

• We show that models utilizing PSD convolutions are more robust to adversarial attacks.

2 Positive Semi-Definite Constraints

In this section, we introduce PSD convolutions and an effective way of imposing PSD constraints on
the kernels of a convolution layer. A method of imposing low-rank constraints on these kernels is
also illustrated. Finally, an initialization method for PSD convolutions is proposed.

2.1 PSD convolutions

Let W ∈ RN×N be a positive semi-definite matrix. W can be decomposed into W = UUT , where
U ∈ RN×N . Conversely, any matrix of the form UUT is positive semi-definite. The decomposition
of W into UUT is not unique and hence, UUT is an overparameterized representation for W .
Besides, any matrix of the form V V T where V ∈ RN×K and N > K is low-rank and positive
semi-definite [3]. Multiplying the matrix W with a vector x ∈ RN needs N2 multiplications. By
using the factorization W = V V T , the operation can be carried out with 2NK multiplications.

As described below and further motivated throughout the rest of the paper, we propose to constrain the
weight matrices in layers of a neural network to be of the form UUT (i.e. to be positive semi-definite).
In this section, we will present an extension of this idea for CNNs. Note that, here, all filters are 4D
tensors and [k] denotes the set {1, . . . , k}.
We say that a k × k convolution kernel F with the same number of input and output channels N
is a PSD convolution if there exist k2 number of 1× 1 filters fi , i ∈ [k2] such that for every input
feature map X , the output map Y = F ∗X can be computed as follows: Let Xi , i ∈ [k2] denote k2
intermediate feature maps Xi = ∆i(X) ∗ fi , i ∈ [k2], in which ∗ and ∆i denote the convolution and
placement operators, respectively. A graphical illustration of the function of the placement operator
is provided in Figure (1). The output feature map Y equals

∑k2

i=1Xi ∗ f>i 1. More specifically, when
we convolve the input feature map with fi and convolve the resulting map with its transpose, f>i , we
are multiplying each feature vector along the channel dimension by a PSD weight matrix. Each PSD
matrix is in the form of Wi = UiU

T
i , where the matrix Ui is the squeezed version of fi. It is worth

noting that we do not use any bias parameters for PSD convolution layers.

In PSD layers, the filters fi contain the parameters optimized during training and F can be easily
calculated from the fis. First, the filter gi = fi × f>i is calculated,2 then the output Y is calculated
as Y =

∑k2

i=1 ∆i(X) ∗ gi.
Remark 1. There exist two methods of convolving a PSD convolution F and a given input feature
map X in the test time. The first method is to directly convolve F and X , and the second method
is based on using the fis as described above. Both methods yield the same results, but they have
different computational complexities. This will be discussed in more detail in Section (2.2).

1In this equation, A> is the channel-wise transpose of the tensor A. The channel-wise transpose of A with a
shape [n1 × n2 × n3 × n4] has the shape [n1 × n2 × n4 × n3].

2This multiplication is equivalent to multiplying Ui, the squeezed version of fi, by UT
i and then inserting

two new axes at the beginning of it. The resulting tensor will have the shape of [1× 1×N ×N ].
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Figure 1: A) A toy example for explaining the placement operator. Consider a 2D slice of a
convolution filter with kernel size 2 × 2. In the convolution operation, when the filter is moved
through the feature map, each element of the filter only sees a specific region of the input map. For
instance, the first element of the filter only can see the yellow region indicated in the upper left square.
In other words, the yellow region in the upper left square represents ∆1(X), where X is a 2D slice
of the input feature map. This operator can be easily defined mathematically. B) A toy example
summarizing the PSD convolution operations.

2.2 Low-ranked PSD convolutions

A PSD convolution layer has a lower degree of freedom than a normal convolution layer. However,
our method of imposing PSD constraints is over-parameterized, and as a result, the number of
parameters of Ui, which are the matrices that are optimized in training, is equal to the number of
parameters of a normal convolution layer. The degree of freedom of a PSD convolution layer and
also the number of its parameters can be reduced by imposing rank constraints.

In order to limit the rank of the filters, the number of output channels of fis are set to be less than
their input channels. This is equivalent to forcing Uis to have more rows than columns and hence,
forcing Wi = UiU

T
i s to be low-rank.

As mentioned in Remark (1), there exist two methods of calculating the convolution of a feature
map with a PSD convolution filter in test time. In the first approach, F is directly convolved with
the feature map. The second approach is the approach mentioned in (2.1). These two methods have
different numbers of multiplications. Suppose that we have access to fis and F . WhenK ≥ N

2 , where
N and K are the number of input and output channels of filters fi, respectively, taking advantage of
the first approach leads to a lower number of multiplications. On the other hand, when K ≤ N

2 , the
second approach is more efficient.

2.3 Initialization of PSD convolutions

In training of PSD ResNets, the matrix Ui is initialized using orthonormal initialization. The
orthogonal matrix used for initialization is obtained by calculating the QR decomposition of a
random matrix with i.i.d. normal entries. For the full-rank version of PSD convolutions, this implies
that initially, the weights Wi = UiU

T
i are equal to the identity matrix. In the low-rank case, the

rectangular matrices Ui have orthonormal columns and the weights Wi = UiU
T
i can have non-zero

off-diagonal entries. However, Wis are still near-identity as on average, their diagonal values are
significantly larger than the off-diagonals.

This initialization technique forces the training to start from a model with low complexity. In training
PSD models, only a small deviation from identity occurs during training, and the weight matrices
remain near identity. These near identity weight matrices can act as a pseudo-skip-connection
inside a single layer. Identity and near-identity initialization have been studied in several papers; for
example, [6] proves that deep linear residual networks with identity initialization can learn positive
semi-definite linear transformations efficiently via gradient descent. [5] shows that a large class of
functions can be exactly written as the composition of "near-identity" mappings.
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3 Experiments

To evaluate the performance of models under our proposed constraints, we set up four types of
experiments. First, we apply the models to standard image classification tasks on four different
benchmarks and compare their accuracy and loss functions. Then, we study the effects of rank
constraints on CNNs equipped with PSD convolutions. After that, we evaluate the robustness of
the models to adversarial attacks. Finally, we study the effectiveness of utilizing PSD weights in
enhancing the optimization of very deep networks.

This method of imposing PSD constraints can be applied to various well-known CNN architectures.
Any convolution layer with an equal number of input and output channels can benefit from PSD
convolutions. Most popular CNN architectures such as ResNets [17], VGGNets [33], and MobileNets
[18] consist of multiple blocks, each of which may contain one or more of such layers. The details
of the PSD versions of ResNet VGGNets can be found in the supplementary materials. In CNN
experiments, we report all results on ResNet-18 and ResNet-34 architectures. In PSD ResNets, PSD
kernels are added to the second layer of each building block. Results for each network are compared
with baseline ResNet-18 or ResNet-34 models.

Training of all models utilizes the typical optimization algorithm for ResNets, which is Stochastic
Gradient Descent (SGD), with a momentum equal to 0.9 and a weight decay protocol [17]. In all
models, an L2 regularization loss is applied on the convolution kernels with λ = 10−5. The weights
of PSD convolution layers are initialized using the method introduced in Section (2.3). Normal
convolution layers are all initialized identical to [16]. For all experiments, we set the batch size to
128. All of the experiments are carried out with Tensorflow [1].

We use the CIFAR-10/100 [26], SVHN [29], and a variant of ImageNet [8] datasets for our experi-
ments. CIFAR-10 and CIFAR-100 consist of 50,000 training and 10,000 test color images of size
32× 32, in 10 and 100 classes, respectively. SVHN is a dataset with more than 600,000 images of
size 32×32 in 10 classes for training and 26,032 images for testing. We also use a small and balanced
variant of ImageNet, which we call Small-ImageNet. It consists of 100 randomly chosen categories
from ImageNet. For each category, 500 instances are randomly selected for training, 50 instances
for validation, and 100 instances as the test set. All images of this dataset are cropped around their
centers and resized to 160× 160 pixels. In all experiments, datasets are normalized with respect to
the mean and standard deviation of the training sets. For CIFAR and ImageNet experiments, just a
horizontal flip is applied and no further augmentation is applied to the datasets.

3.1 Image classification experiments

The accuracies of the PSD versions of ResNet-18 and ResNet-34 alongside their baselines are
reported in Table (1). The reported accuracies are averaged over five trials. In both the ResNet-18 and
ResNet-34 architectures, the PSD version of each network achieves higher accuracy than its baseline
on all datasets. As it is seen, most of the result are statistically significant.

Table 1: Classification accuracy of the PSD and baseline networks on different datasets.

Architecture Model Dataset
CIFAR-10 CIFAR-100 SVHN Small-ImageNet

ResNet-18 PSD 89.7±0.2 66.9±0.6 97.85±0.01 69.5±0.3

Baseline 89.0±0.2 65.9±0.1 97.74±0.06 69.4±0.3

ResNet-34 PSD 90.9±0.2 69.0±0.3 98.01±0.02 70.9±0.2

Baseline 89.4±0.2 66.7±0.4 97.91±0.05 70.7±0.2

To better demonstrate the superior performance of PSD models, the loss function and accuracy of PSD
and baseline ResNet-34 networks on the test and training data of SVHN is illustrated in Figure (2). It
is observed that the baseline ResNet-34 achieves a higher training accuracy than PSD ResNet-34.
However, PSD models exhibit a smaller generalization gap and achieve a higher test accuracy in the
entire steps of training. This reduction in generalization gap can be attributed to the model being less
complex and having a lower degrees of freedom.
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Figure 2: The accuracy (left) and loss function (right) of PSD and baseline ResNet-34 on test and
train data in the SVHN experiment. The pale margin indicates standard deviation across different
trials.

With a motivation to further reduce the complexity of the networks, we introduce a new version of
PSD ResNets called the Linear PSD ResNets. In Linear PSD ResNets, we remove batch normalization
and use a linear activation function, instead of ReLU after all PSD convolution layers of the networks.
The activation functions for other convolution layers remain intact. The other details of the networks
and training are identical to the PSD ResNet. The accuracy of PSD ResNets, Linear PSD ResNets,
and the baselines on CIFAR-10 are reported in Table (2). This table also includes the accuracy of
models with the channel-wise symmetry constraints, denoted as Symmetric ResNets, as introduced in
[19]. The reported accuracies are averaged over five trials. It is shown that Linear PSD ResNets can
even achieve a higher accuracy than the PSD networks.

In these experiments, it is observed that models employing PSD convolutions exhibit higher accu-
racies than models that take advantage of symmetry constraints. This observation proves that the
performance boost observed as a result of imposing PSD constraints is a direct result of additional
attributes of PSD matrices and not just the symmetry that PSD constraints also impose on kernels of
a PSD convolution layer.

Table 2: Test accuracy of the PSD, Linear (Lin.) PSD, Symmetric (Sym.) and Baseline ResNet-18
and ResNet-34 on CIFAR-10.

ResNet-18 ResNet-34

PSD Lin PSD Sym Baseline PSD Lin PSD Sym Baseline

Acc. 89.7±0.2 90.2±0.1 88.7±0.1 89.0±0.2 90.9±0.2 91.3±0.1 89.4±0.2 89.4±0.2

Figure (3) illustrates the accuracy and loss function of PSD, linear PSD, symmetric and baseline
versions of ResNet-18 on CIFAR-10 as a function of training steps.

3.2 Low-rank experiments

Table (3) shows the comparison of the test accuracy between the baseline, PSD and two versions
of low-rank PSD ResNet-18 and ResNet-34 on the CIFAR-10 dataset. PSD/2 and PSD/4 denote
two low-rank ResNet models utilizing PSD convolutions. In PSD/2 and PSD/4, the matrices Wi =
UiU

T
i , Ui ∈ RN×K have K

N equal to 1
2 and 1

4 , respectively. Alongside these models, two control
models UV/2 and UV/4 have also been introduced. In these models, the matrices Wi are decomposed
asWi = UV , where U, V ∈ RN×K . In UV/2 and UV/4, the ratio K

N is equal to 1
2 and 1

4 , respectively.
The matrices U and V are initialized independently in the same way done for U in PSD convolutions.

It can be seen that each low-rank PSD model (PSD/2 and PSD/4) achieves a higher accuracy than
its low-rank counterpart (UV/2 and UV/4) despite having fewer parameters. This brings us to the
conclusion that PSD + low-rank configurations are more effective than low-rank configuration in
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Figure 3: The accuracy (left) and loss function (right) of PSD, linear PSD, symmetric and baseline
versions of ResNet-18 on CIFAR-10 as a function of training steps.

parameter reduction and maintaining the accuracy. The low-rank PSD model also achieves a higher
accuracy than the baseline, but slightly less than the PSD model, leading us to the conclusion that
low-rank PSD constraints are an effective way of decreasing network parameters and increasing its
speed, but at the same time, maintaining the generalization capability of PSD networks.

Table 3: The accuracy and the number of parameters of low-rank PSD models PSD/2 and PSD/4,
low-rank models UV/2 and UV/4, PSD models and the baselines on CIFAR-10.

ResNet-18 ResNet-34

Model # params Accuracy # params Accuracy

PSD 11.2 M 89.7±0.2 21.3 M 90.9±0.2

PSD/2 8.0 M 89.3±0.3 15.6 M 90.4±0.1

UV/2 11.2 M 88.6±0.1 21.3 M 89.2±0.1

PSD/4 6.5 M 89.2±0.2 12.8 M 90.1±0.1

UV/4 8.0 M 88.51±0.04 15.6 M 88.9±0.2

Baseline 11.2 M 89.0±0.2 21.3 M 89.4±0.2

3.3 Robustness to adversarial attacks

We use the test accuracy on adversarial samples generated through Fast Gradient Sign Method (FGSM)
[12] as a measure of a network’s robustness. FGSM is an attack for an l∞-bounded adversary, and
generates an adversarial example as:

x′ = x + εsign(∇xL(θ,x, y)),

where θ is the vector of the parameters of the model, x is the input, y is the output associated with x,
and L is the loss function.

Figure (4) demonstrates the accuracy of PSD ResNet-18, PSD ResNet-34, and the baselines trained
on CIFAR-10 and CIFAR-100 on samples generated through FGSM as a function of ε. It can be seen
that ResNet-18 and ResNet-34 models utilizing PSD convolutions enjoy a higher robustness against
adversarial perturbations of the inputs.

3.4 PSD weights in deeper structures

In this section, we analyze the impact of PSD weights on deeper structures and its potential effects
on the training of such networks. To better assess the sole effect of a PSD configuration in deep
networks, we conduct our experiment on multi-layer perceptrons (MLPs) for their simplicity and
interpretability.
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Figure 4: Test accuracy of PSD ResNet-18, PSD ResNet-34, and the baselines on adversarial samples
generated through FGSM as a function of ε in CIFAR-10 (left) and CIFAR-100 (right). Note that for
a better visualization, the error bars shown are twice the standard deviations.

In this experiment, we have used the CIFAR-10 dataset. The first and second layers of MLPs change
the dimension from 3072 to 1024 and from 1024 to 512, respectively. All other layers have square
weight matrices of size 512 × 512. In PSD and symmetric MLPs, the square weight matrices are
enforced to be positive semi-definite and symmetric, respectively. The weights of the baseline MLPs
are not constrained.

The test and train accuracy of PSD, symmetric and baseline MLPs as a function of their number of
layers is illustrated in Figure (5). All networks were trained using the Adam optimization algorithm.
The results are reported for two different learning rates of 10−4 and 10−5.

In this experiment, as the number of layers increases, it is expected that the MLPs should be able to
fit the data perfectly and achieve 100% train accuracy. However, this is not the case for baseline and
symmetric MLPs and a significant drop is observed in their train accuracy when layers are added. This
drop is attributed to the fact that very deep baseline and symmetric MLP models cannot be trained
properly. Such a significant drop is not observed in the test or train accuracy of networks utilizing
PSD weights, and training is possible even for very deep PSD MLPs. This effect suggests that our
PSD configuration equipped with its specific initialization scheme can enhance the optimization and
gradient flow in very deep networks.

Figure 5: The test and train accuracy of PSD, symmetric, and baseline MLPs trained with a learning
rate equal 10−4 (left) and 10−5 (right) with respect to the number of layers.

4 Discussion

In this paper, we impose PSD constraints on kernels of a convolution layer. We demonstrated that the
proposed method can improve the performance of CNNs despite decreasing the degree of freedom
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of convolution layers. CNNs utilizing PSD constraints exhibit lower generalization gaps and are
more robust to adversarial samples. A low-rank version of PSD convolution is also introduced to
decrease the number of parameters optimized in training. It is shown that even under low-rank PSD
constraints, the models achieve higher test accuracies than baseline models. Finally, we demonstrated
that PSD weight matrices can enhance the optimization of deeper structures. These results and the
outcome of our control experiments provide evidence that the proposed structural regularization
technique enhances the general performance of a deep neural network. However, several theoretical
and experimental questions still remain open for future works.

Although an improved generalization is experimentally demonstrated in this paper, a comprehensive
theoretical justification of this phenomenon does not yet exist. The over-parameterized representation
of PSD convolutions used in this study could be a potential reason for this enhanced generalization
[10, 30, 38, 34, 2].

The enhanced optimization of deeper structures under PSD constraints might be a consequence of a
better flow of the gradient in PSD networks. The near-identity PSD kernels implicitly add shortcut
connections [17] to each convolution layer and enhance residual learning. More in-depth studies on
identity and near-identity initialization, and its potential effect in the training of very deep networks,
could serve as an interesting course for further research.

Broader Impact

Nowadays, the importance of convolutional networks is evident to everyone. There are many areas
in which CNNs are applied. One of the most notable examples is the analysis of medical images.
Recently it has been proved that CNNs can be a "good" assistant to the doctors in diagnosing many
types of Cancers. However, in some cases, their diagnoses are not fully trustable. Since our proposed
method results in a lower generalization gap, and a higher robustness to input perturbations, the
analysis based on them could be more reliable.

To the best of our knowledge, there are no data or algorithmic bias concerned with our methods and
experiments. Statistical considerations were taking into account in all experiments.
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