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Anatomically-informed spatial noise models improve inference for
multi-voxel pattern analysis
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Introduction

Methods: empirical noise correlation

Voxel correlation depends on their spatial distance

Voxel correlation also depends on cortical depth

Evaluating model predictions

Regularized estimate

Conclusion and open questions
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• The spatial covariance of fMRI measurement noise has a strong and reliable
structure

• Assuming that voxels are independent leads to sub-optimal multivariate
inference (Walther et al., 2016, Diedrichsen et al., 2021)

• Estimating the spatial noise covariance is hard: Often the #observations is
smaller (or close to) the #voxels -> Empirical estimate has high variance.

• Solution: Shrink the estimate towards the diagonal (Ledoit and Wolf, 2003).
This biases the estimate towards the incorrect assumption that voxels are
independent.

What factors determine the voxel-by-voxel noise covariance in fMRI?

• Build a model that predicts noise correlations based on anatomical
information
• Use the model prediction to integrate with empirical estimate
• Improve inference for multi-voxel pattern analysis
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First-level linear model: Y = XB + RT×P

Voxels have different noise-levels

Voxels are correlated:
estimate the correlation from
standardized residuals
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We used 6 fMRI datasets with voxel resolution ranging from 1.4mm-3mm

Estimating the noise correlation from the residual of the first-level GLM

We expect noise correlation to decay as a function of spatial distance.

• Measurement noise is expected to fall off with distance in the volume (3d)
• Neural variability is expected to fall off with the distance on the cortical surface (2d)

• In most brain regions, 3d and 2d are correlated
• Accounting for 3d, does the correlation decay with 2d distance?
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Different distance models:

Correlation falls off as a
double exponential.
Large correlations
between neighbouring
voxels - persistent
correlations over long
distances.

2 voxels both located
in deep, have small
correlation

2 voxels both located
near CSF, have
larger correlation
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2/6 datasets showed
significant decreasing pattern

Within each bin, we calculated
the slope and average the
slopes across bins

4/6 datasets showed
numerically negative slope
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Voxels lie deeper in the grey matter tend to have smaller correlation
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Imaging runs

Model fit M(θ) Σ̂P

How well does each model predict the noise-correlation in a left-out run?

Evaluation: Predicted variance of a multivariate measure
(distance, correlation, second moment) depends on the effective
number of voxels after pre-whitening:

Voxel correlation after
pre-whitening
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Model with depth and 3d-
distance is the best

2d-distance does not add
much

Practically, we can use the common parameters
estimated in one study to apply to a completely
new dataset.

Model parameters are stable across subjects and
datasets
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Using model prediction as a shrinkage target in regularization:

Σ̃P = (1 − λ)Σ̂P + λM
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• Models with only 3d distance predict noise correlation better than models
with 2d distance. Is 2d distance a better predictor for signal variabilities?

• Better model of noise correlation leads to smaller variance multivariate
measures

• Pre-whitening emphasizes high spatial frequencies. What if signal
variabilities are in low spatial frequencies?
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