
PSY 9555A (Oct 9) CFA Measurement and Test Construction Example of the Principle of Aggregation

Consider a situation where we have three test items that all correlate .20 with an achievement score and .70 with each other. Let's see how well we can predict achievement in two different ways.

	ACHIEV	ITEM1	ITEM2	ITEM3
ACHIEV	1.000			
ITEM1	0.200	1.000		
ITEM2	0.200	0.700	1.000	
ITEM3	0.200	0.700	0.700	1.000

Example of the Principle of Aggregation

Explain the difference in R-square

A Perfectly Fitting Model

```
5.0 5.2 5.1 5.4 5.0
1.1 1.2 1.1 1.3 1.2
1.0
.50 1.0
.50 .50 1.0
.50 .50 .50 1.0
.50 .50 .50 50 1.0
```

```
title: Example reading a correlation matrix !title of analysis

data:

file is example_corr.txt;

nobservations = 200; !the number of observations must be included

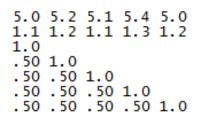
type=correlation means stdeviations; !type=correlation tells mplus that the data are correlations

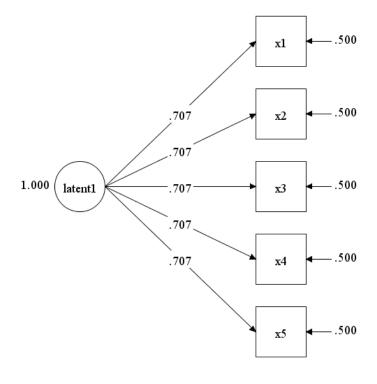
variable:

names are x1 x2 x3 x4 x5; !variable names

usevariables are x1 x2 x3 x4 x5; !variables used in analysis

model:


latent1 by x1 x2 x3 x4 x5;


output:

stdyx residual;
```

A Perfectly Fitting Model

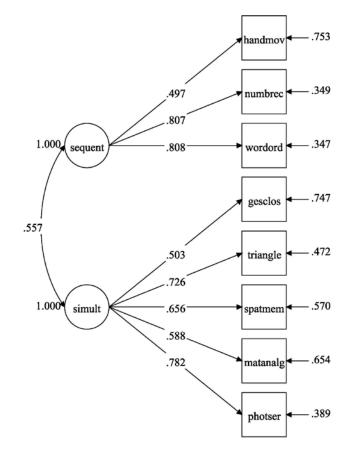
MODEL FIT INFORMATION							
Number of	Free Parameters	15					
Loglikelihood							
	HO Value	-1412.560					
	H1 Value	-1412.560					
Informati	on Criteria						
	Akaike (AIC)	2855.120					
	Bayesian (BIC)	2904.595					
	Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$	2857.074					
Chi-Squar	e Test of Model Fit						
	Value	0.000					
	Degrees of Freedom	5					
	P-Value	1.0000					
RMSEA (Root Mean Square Error Of Approximation)							
	Estimate	0.000					
	90 Percent C.I.	0.000	0.000				
	Probability RMSEA <= .05	1.000					
CFI/TLI							
	CFI	1.000					
	TLI	1.031					
Chi-Squar	e Test of Model Fit for the Base	eline Model					
	Value	334.795					
	Degrees of Freedom	10					
	P-Value	0.0000					
SRMR (Sta	ndardized Root Mean Square Resid	dual)					
	Value	0.000					

Example 1: Factor Structure of KABC-I (in Kline p. 117-118)

Example 1: Fit Indices

MODEL FIT	INFORMATION		
Number of	Free Parameters	17	
Loglikeli	nood		
	HO Value	-3779.041	
	H1 Value	-3759.878	
Informatio	on Criteria		
	Akaike (AIC)	7592.082	
	Bayesian (BIC)	7648.153	
	Sample-Size Adjusted BIC	7594.295	
	(n* = (n + 2) / 24)		
Chi-Square	e Test of Model Fit		
	Value	38.325	
	Degrees of Freedom	19	
	P-Value	0.0054	
RMSEA (Roo	ot Mean Square Error Of Approxi	mation)	
	Estimate	0.071	
	90 Percent C.I.	0.038	0.104
	Probability RMSEA <= .05	0.132	
CFI/TLI			
	CFI	0.959	
	TLI	0.939	
8			

Chi-Square Test of Model Fit for the Baseline Model


Value 498.336

Degrees of Freedom 28

P-Value 0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.072

Example 1: Inspecting the Residuals

	Standardized	Residuals (z-so	cores) for Cov	ariances/Corre	lations/Residual Cor	7
	HANDMOV	NUMBREC	WORDORD	GESCLOS	TRIANGLE	
HANDMOV	999.000					
NUMBREC	-0.595	999.000				
WORDORD	-3.803	1.537	999.000			handmov -
GESCLOS	1.126	-2.329	-1.315	999.000		Halldillov
TRIANGLE	2.046	-1.558	-1.001	0.427	999.000	
SPATMEM	3.464	-0.112	-0.354	-0.785	-0.268	
MATANALG	3.505	1.129	0.727	0.323	-0.246	.497 numbrec •
PHOTSER	2.990	-2.001	0.524	0.909	0.676	.497 numbled
						.807
						.007
	Standardized	Residuals (z-so	cores) for Cov	ariances/Corre	lations/Residual Cor	sequent 808 wordord
	SPATMEM	MATANALG	PHOTSER			sequent) .500 worderd
SPATMEM	999.000					
MATANALG	0.664	0.042				gesclos e
PHOTSER	-0.144	-1.978	999.000			J. gustos
						.557
					ual Correlations	triangle triangle
	HANDMOV	NUMBREC	WORDORD	GESCLOS	TRIANGLE	
HANDMOV	-0.001					.726
NUMBREC	-0.144	0.000				1,000
WORDORD	-0.144	0.208	0.000			1.000 simult .656 spatmem
GESCLOS	0.981	-1.631	-0.927	0.000		
TRIANGLE	1.603	-0.772	-0.502	0.193	0.000	.588
SPATMEM	2.869	-0.066	-0.208	-0.406	-0.085	782 metanala de d
MATANALG	2.996	0.751	0.479	0.194	-0.093	.782 matanalg
PHOTSER	2.289	-0.833	0.241	0.350	0.148	
PHOISER	2.203	-0.033	0.211	0.550	0.140	
						nhotser
	Normalized Re	siduals for Cov	variances/Corr	elations/Resid	ual Correlations	photser —
	SPATMEM	MATANALG	PHOTSER			
SPATMEM	-0.001					

MATANALG

PHOTSER

0.318

-0.036

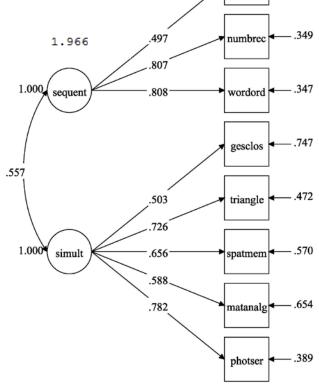
0.000

-0.516

0.000

Example 1: Inspecting the Modification Indices

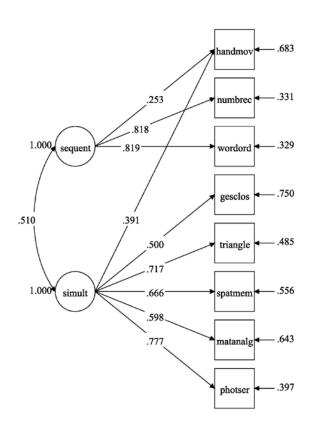
MODEL MODIFICATION INDICES


NOTE: Modification indices for direct effects of observed dependent variables regressed on covariates may not be included. To include these, request MODINDICES (ALL).

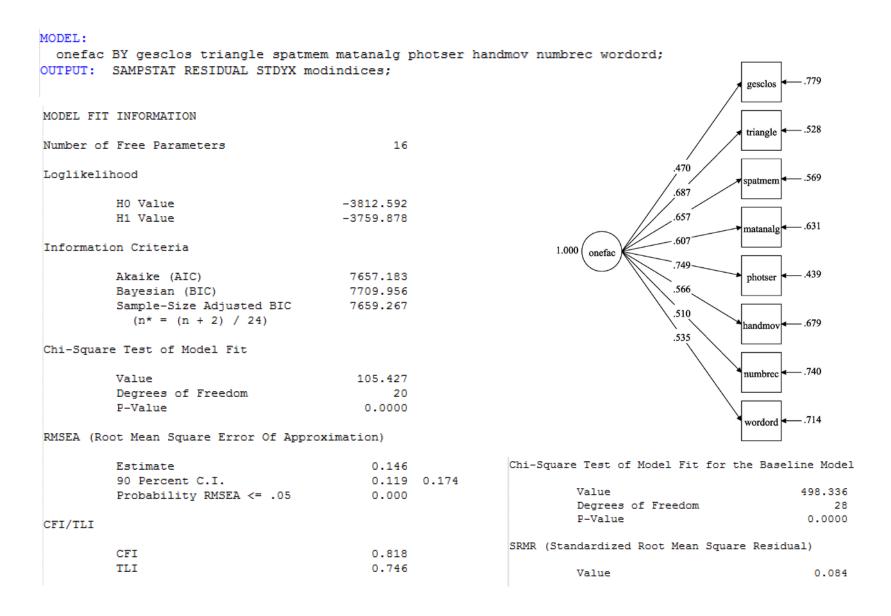
Minimum M.I. value for printing the modification index 10.000

|--|

BY Statements


SIMULT BY HANDMOV	20.091	1.054	1.427	0.421	handmov753
WITH Statements					
WORDORD WITH NUMBER	20 042	4 725	4 725	1 066	.497 numbrec349

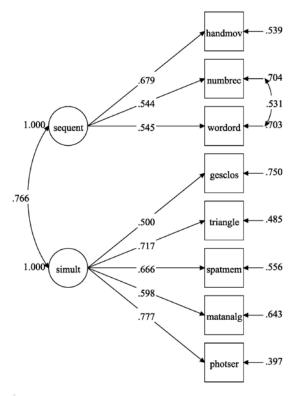
Example 1: Adding a Cross Loading


MODEL:

Sequent BY handmov numbrec wordord; Simult BY gesclos triangle spatmem matanalg photser handmov; OUTPUT: SAMPSTAT RESIDUAL STDYX modindices;

MODEL FIT	INFORMATION						
Number of	Free Parameters	18					
Loglikelihood							
	HO Value	-3768.932					
	H1 Value	-3759.878					
Informatio	on Criteria						
	Akaike (AIC)	7573.864					
	Bayesian (BIC)	7633.234					
	Sample-Size Adjusted BIC	7576.208					
	(n* = (n + 2) / 24)						
Chi-Square	e Test of Model Fit						
	Value	18.108					
	Degrees of Freedom	18					
	P-Value	0.4486					
RMSEA (Roo	ot Mean Square Error Of Approxim	mation)					
	Estimate	0.005					
	90 Percent C.I.	0.000	0.063				
	Probability RMSEA <= .05	0.859					
CFI/TLI							
	CFI	1.000					
	TLI	1.000					
	ILI	1.000					
Chi-Square	e Test of Model Fit for the Base	eline Model					
	Value	498.336					
	Degrees of Freedom	28					
	P-Value	0.0000					
SRMR (Star	ndardized Root Mean Square Resid	dual)					
	Value	0.035					

Example 1: Another Approach – Testing a One-Factor Solution



Example 1: Third Approach to Modification: Correlated Errors

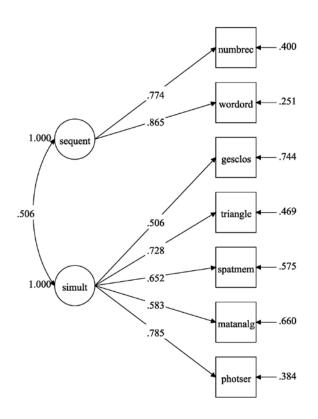
MODEL:

Sequent BY handmov numbrec wordord; numbrec with wordord; Simult BY gesclos triangle spatmem matanalg photser;

	TVEORYZETOV		
MODEL FIT	INFORMATION		
Number of	Free Parameters	18	
Loglikelih	nood		
	HO Value	-3768.932	
	H1 Value	-3759.878	
Informatio	on Criteria		
	Akaike (AIC)	7573.864	
	Bayesian (BIC)	7633.234	
	Sample-Size Adjusted BIC	7576.208	
	(n* = (n + 2) / 24)		
Chi-Square	e Test of Model Fit		
	Value	18.108	
	Degrees of Freedom	18	
	P-Value	0.4486	
RMSEA (Roo	ot Mean Square Error Of App	proximation)	
	Estimate	0.005	
	90 Percent C.I.	0.000	0.063
	Probability RMSEA <= .05	0.859	
CFI/TLI			
	CFI	1.000	
	TLI	1.000	

Chi-Square Test of Model Fit	for the Baseline Model
Value Degrees of Freedom P-Value	498.336 28 0.0000
SRMR (Standardized Root Mean	Square Residual)
Value	0.035

Example 1: Fourth Approach to Modification: Removal of Poor Indicator


1.000

1.008

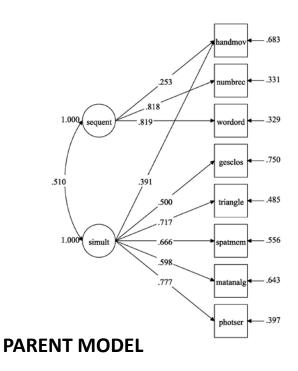
MODEL: Sequent BY numbrec wordord; Simult BY gesclos triangle spatmem	matanalg	photser;
MODEL FIT INFORMATION		
Number of Free Parameters	15	i
Loglikelihood		
HO Value	-3272.389	
H1 Value	-3266.849	
ni value	-3200.043	,
Information Criteria		
Akaike (AIC)	6574.778	
Bayesian (BIC)	6624.253	
Sample-Size Adjusted BIC		
(n* = (n + 2) / 24)	0070.701	•
Chi-Square Test of Model Fit		
Value	11.080)
Degrees of Freedom	13	1
P-Value	0.6041	
RMSEA (Root Mean Square Error Of Approx	imation)	
Estimate	0.000)
90 Percent C.I.		0.061
Probability RMSEA <= .05	0.895	
CFI/TLI		

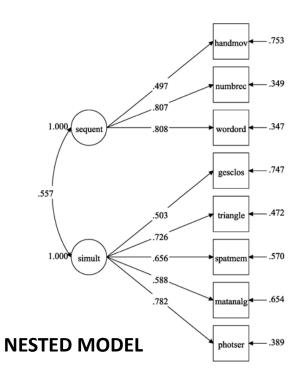
CFI

TLI

Chi-Square Test of Model Fit for the Baseline Model

Value	428.313
Degrees of Freedom	21
P-Value	0.0000

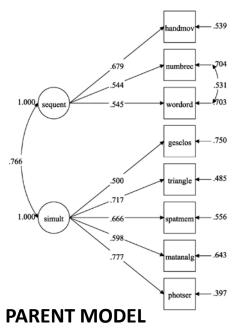

SRMR (Standardized Root Mean Square Residual)

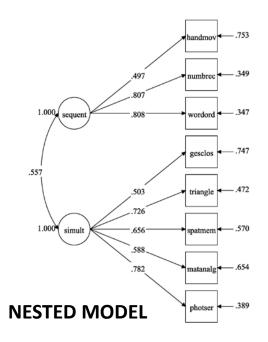

Value 0.032

Example 1: Summary of Four Modified Models

Model	χ^2 (df)	RMSEA	CFI	SRMR	AIC
1. Original	38.325 (19) p = .005	.071	.959	.072	7592.082
2. Cross-loading	18.108 (18) p = .449	.005	1.000	.035	7573.864
3. One-factor	105.427 (20) p = .000	.146	.818	.084	7657.183
4. Correlated errors	18.108 (18) p = .449	.005	1.000	.035	7573.864
5. Remove indicator	11.080 (13) p = .604	.000	1.000	.032	6574.778

Understanding Nested Models: Cross Loading Model vs. Original Model

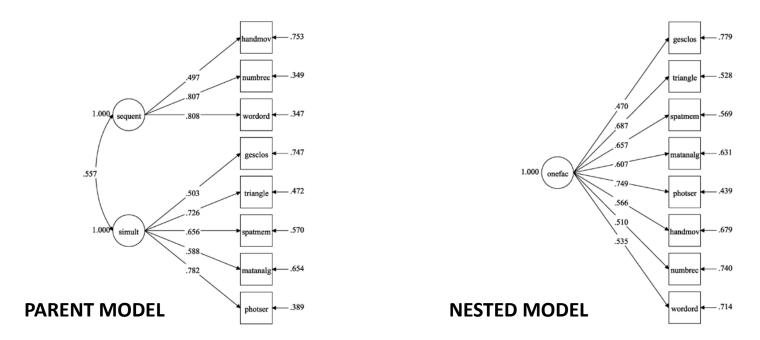

NESTED MODEL: $\chi^2_{(19)} = 38.325$, p < .001


PARENT MODEL: $\chi^2_{(18)} = 18.108$, p = .449

Chi-square Difference test:

 $\chi^2_{(19)}$ 38.325 - $\chi^2_{(18)}$ 18.108 = $\chi^2_{(1)}$ 20.217, p < .01 (crit $\chi^2_{(1)}$ = 3.84 at p = .05 or 6.64 at p = .01)

Nested Models: Correlated Errors Model vs. Original Model

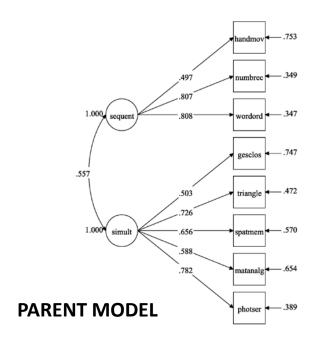

NESTED MODEL: $\chi^2_{(19)} = 38.325$, p < .001

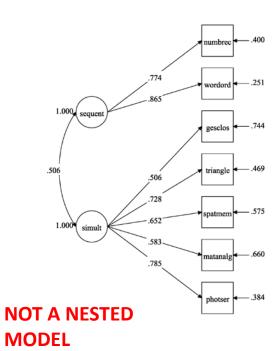
PARENT MODEL: $\chi^2_{(18)}$ = 18.108, p = .449 (same values as cross-loading model)

Chi-square Difference test:

$$\chi^2_{(19)}\,38.325 - \chi^2_{(18)}\,18.108 = \chi^2_{(1)}\,20.217,\, p < .01$$
 (crit $\chi^2_{(1)}$ = 3.84 at p = .05 or 6.64 at p = .01)

Nested Models: One-Factor Model vs. Original (Two-Factor) Model


NESTED MODEL: $\chi^2_{(20)}$ = 105.427, p < .001 (nested because a one factor model is conceptually like two factors with a correlation fixed at one)


PARENT MODEL: $\chi^2_{(19)} = 38.325$, p < .005

Chi-square Difference test:

$$\chi^2_{(20)}$$
 105.427 - $\chi^2_{(19)}$ 38.325 = $\chi^2_{(1)}$ 67.102, p < .01 (crit $\chi^2_{(1)}$ = 3.84 at p = .05 or 6.64 at p = .01)

Nested Models: Model with Removed Indicator vs. Original Model

Example with Test/Questionnaire Items Using Mplus CATEGORICAL

Analytic Methods

Confirmatory factor analysis of the items was conducted in Mplus Version 6.12 (Muthén & Muthén, 1998-2012) with a weighted least squares estimator with mean and variance adjusted chi-square test statistics (WLSMV). The "categorical" outcome variable option was specified to indicate that items were measured on an ordered discrete category "scale" rather than on a continuous scale. In Mplus, this specification refers to Samejima's graded response models (Baker and Kim, 2004; Samejima, 1969).

Item Analyses

A series of nested models presented in Table 1 was estimated: a one-factor model, followed by a one-factor model with one, two, and three correlated residuals. These correlated residuals are theoretically valid because they refer to items from the same subdomains (i.e., items 1 and 7 "getting around", items 8 and 9 "self-care", and items 10 and 11 "getting along with people). These models are summarized in Table 1, and show that the final model has a good fit. The items loadings and response proportions are presented in Table 2. It can be seen that all items have substantial loadings and variability in the responses. The coefficient alpha for the scale was .90.

Table 2. Confirmatory Factor Analysis of WHO-DAS-II Items

Ŧ									
Items	CFA Loadings	Means (SD)	Response proportions						
		Loadings		1	2	3	4	5	
	1. Standing for long periods such as 30 minutes?	.68	2.05 (1.25)	.51	.13	.19	.13	.04	
	2. Taking care of your household responsibilities?	.80	2.05 (1.07)	.42	.25	.22	.10	.01	
	3. Learning a new task, for example, learning to get to a new place?	.71	1.70 (0.97)	.60	.18	.17	.05	.01	
	4. How much of a problem did you have joining in community activities (for example, festivities, religious or other activities) in the same way as anyone else can?	.76	2.12 (1.25)	.45	.19	.18	.13	.05	
	5. How much have you been emotionally affected by your health problems?	.80	2.65 (1.28)	.26	.21	.22	.25	.07	

+

Items	CFA Loadings	Means (SD)	Response proportions						
	Loadings		1	2	3	4	5		
6. Concentrating on doing something for ten minutes?	.72	1.86 (1.09)	.53	.19	.18	.08	.02		
7. Walking a long distance such as a kilometre?	.71	2.07 (1.34)	.52	.16	.14	.11	.08		
8. Washing your whole body?	.73	1.34 (0.76)	.80	.10	.07	.03	.00		
9. Getting dressed?	.75	1.35 (0.76)	.78	.13	.06	.03	.00		
10. Dealing with people you do not know?	.74	1.91 (1.14)	.52	.21	.15	.09	.03		
11. Maintaining a friendship?	.73	1.72 (1.05)	.61	.18	.13	.06	.02		
12. Your day-to-day work?	.85	2.08 (1.21)	.47	.21	.19	.08	.05		

Note. Response categories: 1 = none; 2 = mild; 3 = moderate; 4 = severe; 5 = extreme or cannot do

Table 1. CFA WHO-DAS II item analyses.


+						
Model	χ^2	<u>df</u>	$\Delta \chi^2$	CFI	TLI	RMSEA
one-factor	525.14	54		.94	.92	.14
one-factor, cov e1-e7	310.79	53	93.97*	.97	.96	.10
one-factor, <u>cov</u> e ₁ -e ₇ , e ₈ -e ₉	214.34	52	39.91*	.98	.97	.08
one-factor, <u>cov</u> e ₁ -e ₇ , e ₈ -e ₉ , e ₁₀ -e ₁₁	188.91	51	23.68*	.98	.98	.08

Note *p < .001; $\Delta \chi^2$ are based on Mplus Difference Tests for WLSMV estimation

```
categorical are Diff1 Diff2 Diff3 Diff4 Diff5 Diff6 Diff7 Diff8 Diff9 Diff10 Diff11 Diff12; usevariables are Diff1 Diff2 Diff3 Diff4 Diff5 Diff6 Diff7 Diff8 Diff9 Diff10 Diff11 Diff12; MODEL: whodas by Diff1 Diff2 Diff3 Diff4 Diff5 Diff6 Diff7 Diff8 Diff9 Diff10 Diff11 Diff12; diff1 with diff7; diff9 with diff8; diff10 with diff11;
```

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

DIFF1			
Category	1	0.511	227.000
Category	2	0.128	57.000
Category	3	0.191	85.000
Category	4	0.133	59.000
Category	5	0.036	16.000
DIFF2			
Category	1	0.422	183.000
Category	2	0.249	108.000
Category	3	0.221	96.000
Category	4	0.097	42.000
Category	5	0.012	5.000
DIFF3			
Category	1	0.596	263.000
Category	2	0.177	78.000
Category	3	0.170	75.000
Category	4	0.050	22.000
Category	5	0.007	3.000
DIFF4			
Category	1	0.451	200.000
Category	2	0.194	86.000
Category	3	0.176	78.000
Category	4	0.131	58.000
Category	5	0.047	21.000

Could we Constrain the Item Loadings to Equality?

- Equal factor loadings would satisfy property of tau-equivalence
- We will run such a model; it will be the nested model
- We will compare it to our previous parent model
- If the chi-square difference test is significant then it will indicate that there is significant misfit with the introduction of this restriction
- One problem is that with the CATEGORICAL approach, chi-square tests need to be calculated in a different way
- Mplus provides an appropriate chisquare difference test but some additional syntax is required

Could we Constrain the Item Loadings to Equality?

Parent Model (no constraints)

```
MODEL:
whodas by Diff1 Diff2 Diff3 Diff4 Diff5 Diff6 Diff7 Diff8 Diff9
Diff10 Diff11 Diff12;
diff1 with diff7;
diff9 with diff8;
diff10 with diff11;
savedata:
difftest is mydiff.dat
```

Nested Model (equality constraints)

```
analysis:
difftest = mydiff.dat;
MODEL:
whodas by Diff1* Diff2 Diff3 Diff4 Diff5 Diff6 Diff7 Diff8 Diff9 (1)
Diff10 Diff11 Diff12 (1);
diff1 with diff7;
diff9 with diff8;
diff10 with diff11;
whodas@1;
!savedata:
!difftest is mydiff.dat
```

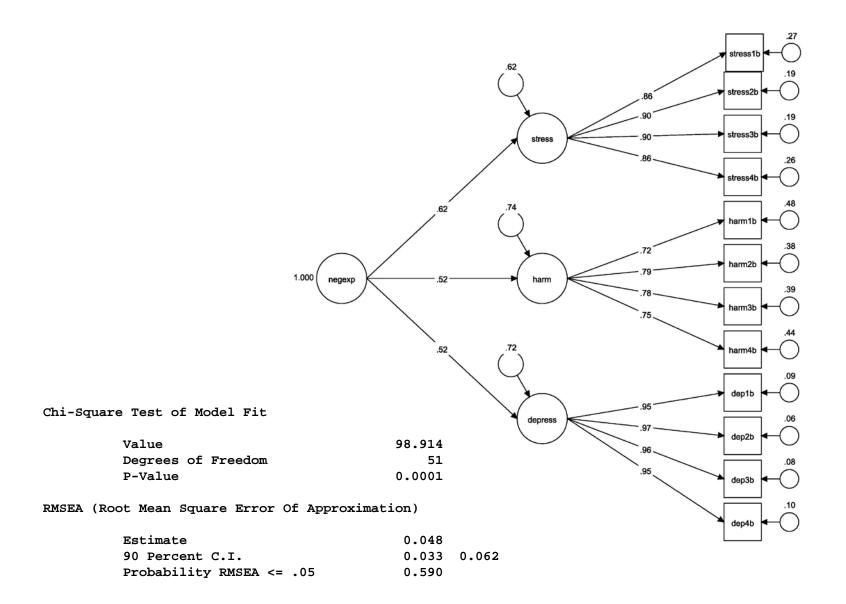
Could we Constrain the Item Loadings to Equality?

	0	т		т .		_	т	-	٠,	т	100	$\overline{}$		1	4.7	٠,	т	_	_		١
м	v.	D.	E.	ь.	r	_	1		LĽ	v	Е	U	ь	u	ш	٩.	L	I	u	т	ı

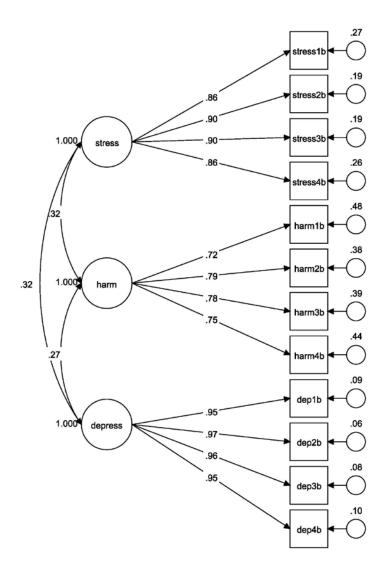
Number of	Free Parameters	52	STDYX Standardizat	ion			
Chi-Squar	e Test of Model Fit			Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
	Value	189.984*					
	Degrees of Freedom	62	WHODAS BY				
	P-Value	0.0000	DIFF1	0.756	0.013		0.000
			DIFF2	0.756	0.013		0.000
Chi-Squar	e Test for Difference T	esting	DIFF3	0.756	0.013		0.000
CHI DQUUI	e rest for bifference r	-501ng	DIFF4	0.756	0.013		0.000
	Value	37.791	DIFF5	0.756	0.013		0.000
			DIFF6	0.756	0.013		0.000
	Degrees of Freedom	11	DIFF7	0.756	0.013		0.000
	P-Value	0.0001	DIFF8	0.756	0.013		0.000
			DIFF9	0.756	0.013		0.000
* The c	hi-square value for MLM:	, MLMV, MLR, ULSMV, WLSM and WLSMV o		0.756	0.013		0.000
for c	hi-square difference te	sting in the regular way. MLM, MLR		0.756	0.013		0.000
chi-s	quare difference testin	g is described on the Mplus website.	MLMV, WLSMV, DIFF12	0.756	0.013	58.972	0.000
and U	LSMV difference testing	is done using the DIFFTEST option.					
	_		DIFF1 WITH				
RMSEA (Ro	oot Mean Square Error Of	Approximation)	DIFF7	0.610	0.042	14.464	0.000
			DIFF9 WITH				
	Estimate	0.068	DIFF8	0.628	0.052	12.115	0.000
	90 Percent C.I.	0.057 0.079					
	Probability RMSEA \leftarrow .	0.004	DIFF10 WITH				
			DIFF11	0.312	0.068	4.586	0.000
CFI/TLI							
	CFI	0.983					
	TLI	0.982					

Chi-Square Test of Model Fit for the Baseline Model

Value 7463.430


Degrees of Freedom 66

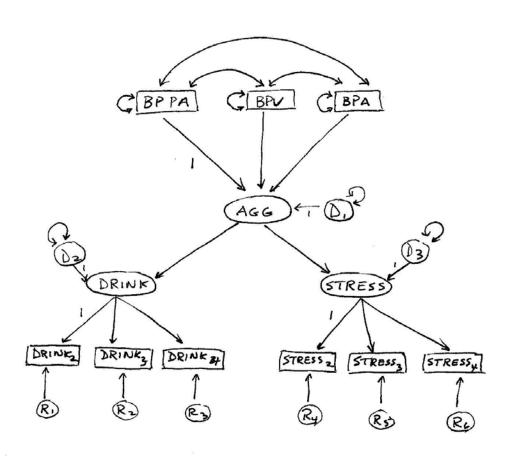
P-Value 0.0000


WRMR (Weighted Root Mean Square Residual)

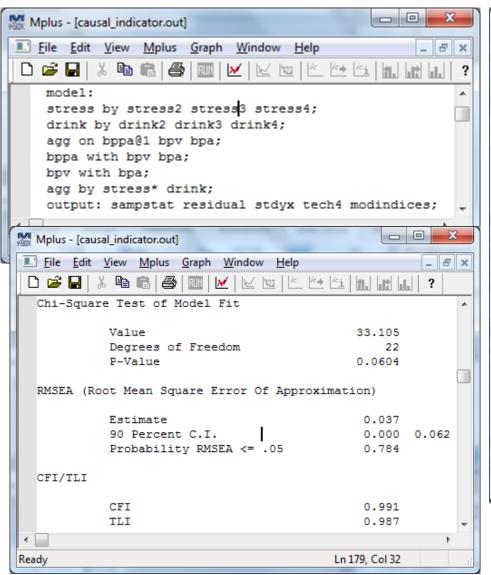
Value 1.348

An Example of Hierarchical CFA

An Equivalent Model


Chi-Square Test of Model Fit

Value	98.914
Degrees of Freedom	51
P-Value	0.0001


RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.048	
90 Percent C.I.	0.033	0.062
Probability RMSEA <= .05	0.590	

Causal Indicators

Causal Indicators

Mplus - [causal_indicator.ou	ut]	_		X	
File Edit View Mplus	Graph Window	Help		_ 8	×
	3 RUM № №	<u>123</u> [A A →]	<u> </u>	∐ ?	
STDYX Standardizat	ion				_
	Estimate	e F	Est./S.E.	Two-Tailed P-Value	
	Escimace	J.E.	ESC./J.E.	r-value	
STRESS BY					
STRESS2	0.732	0.029	25.333	0.000	
STRESS3	0.919	0.021	43.240	0.000	
STRESS4	0.820	0.025	33.461	0.000	
DRINK BY					
DRINK2	0.811	0.021	38.063	0.000	
DRINK3	0.927	0.015	62.314	0.000	
DRINK4	0.878	0.017	51.555	0.000	
					=
AGG BY					
STRESS	-0.355	0.097	-3.671	0.000	
DRINK	0.485	0.122	3.958	0.000	
AGG ON					
BPPA	0.331	0.127	2.611	0.009	
BPV	0.301	0.121	2.488	0.013	
BPA	-0.381	0.128	-2.979	0.003	
BPPA WITH					
BPV	0.475	0.040	11.741	0.000	
BPA	0.536	0.037	14.366	0.000	
BPV WITH	0.500	0.000		0.000	
BPA	0.528	0.038	14.013	0.000	Ŧ
←				· ·	
Ready			Ln 267, Col 1		.::