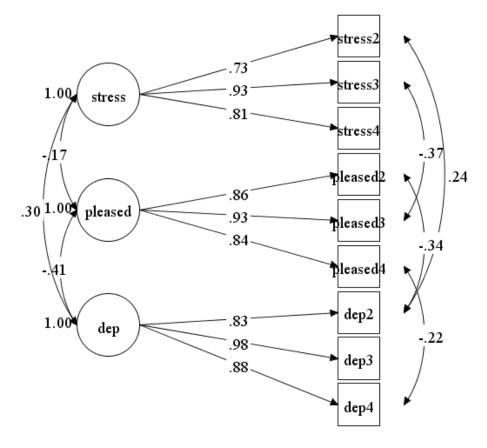

PSY 9555A (Oct 16): CFA Extensions (Invariance and Means) Multi-Trait Multi-Method Model

```
model:
stress by stress2 stress3 stress4;!trait1
pleased by pleased2 pleased3 pleased4;!trait2
dep by dep2 dep3 dep4;!trait3
Time2 by stress2 pleased2 dep2;!method1 (not really a method but capturing variance associated with Time2)
Time3 by stress3 pleased3 dep3;!method2
Time4 by stress4 pleased4 dep4;!method3
stress with pleased dep;
pleased with dep;
time2 with time3 time4;
time3 with time4;
time3 with time4;
time2 - time4 with stress - dep @0;!fixing at 0 any correlations between the trait and method correlations output: sampstat residual stdyx tech4; !note that tech4 outputs correlations among latent variables
```


This model did not converge

Multi-Trait Multi-Method Model: Correlated Residuals

```
model:
stress by stress2 stress3 stress4;
pleased by pleased2 pleased3 pleased4;
dep by dep2 dep3 dep4;
stress with pleased dep;
stress2 with pleased2 dep2;
pleased2 with dep2;
stress3 with pleased3 dep3;
pleased3 with dep3;
stress4 with pleased4 dep4;
pleased4 with dep4;
output: sampstat residual stdyx tech4;
Chi-Square Test of Model Fit
                                            21.380*
          Value
          Degrees of Freedom
                                                15
          P-Value
                                            0.1251
          Scaling Correction Factor
                                            1.0853
            for MLR
RMSEA (Root Mean Square Error Of Approximation)
          Estimate
                                             0.033
          90 Percent C.I.
                                             0.000
          Probability RMSEA <= .05
                                             0.796
CFI/TLI
          CFI
                                             0.995
          TLI
                                             0.988
SRMR (Standardized Root Mean Square Residual)
          Value
                                             0.025
```

Standardized solution Non-significant coefficients/paths removed

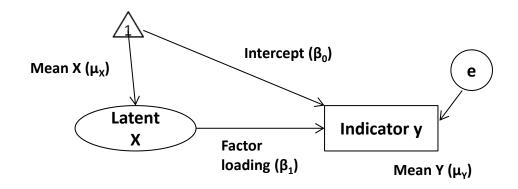
Reliability of Latent Variables

SEQUENT BY	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	$\hat{ ho}_{X_iX_i} = rac{\left(\sum \hat{\lambda}_i ight)^2 \hat{\phi}}{\left(\sum \hat{\lambda}_i ight)^2 \hat{\phi} + \sum \hat{ heta}_{ii}}$
HANDMOV	1.000	0.000	999.000	999.000	
NUMBREC	1.147	0.181	6.341	0.000	In Kline (Raykov, 1997, 2004)
WORDORD	1.388	0.219	6.341	0.000	
CTMILE DV					Use unstandardized solution
SIMULT BY GESCLOS	1.000	0.000	999.000	999.000	
TRIANGLE	1.445	0.000	6.353	0.000	
SPATMEM	2.029	0.335	6.062	0.000	
MATANALG	1.212	0.212	5.717	0.000	D. P. J. P. CECHENT
PHOTSER	1.727	0.265	6.521	0.000	Reliability of SEQUENT
SIMULT WITH SEQUENT	1.271	0.324	3.918	0.000	(1.00+1.147+1.388)^2 = 12.496
Variances				0.004	12.496 x 2.839 = 35.477
SEQUENT	2.839 1.835	0.838 0.530	3.389 3.460	0.001 0.001	\rightarrow 12.490 X 2.839 = 35.477
SIMOLI	1.035	0.550	3.400	0.001	35.477 / 35.477 +(8.664+1.998+2.902)
Residual Variances	3				\longrightarrow 33.477 33.477 (6.004 1.336 2.302)
HANDMOV	8.664	0.938	9.237	0.000	=.723
NUMBREC	1.998	0.414	4.830	0.000	725
WORDORD	2.902	0.604	4.801	0.000	
GESCLOS	5.419	0.585	9.261	0.000	
TRIANGLE	3.425	0.458	7.479	0.000	See Kline p. 242 for other equations
SPATMEM	9.998	1.202	8.320	0.000	·
MATANALG PHOTSER	5.104 3.483	0.578 0.537	8.837 6.482	0.000	Involving correlated errors
FIIOTSER	3.703	0.557	0.702	0.000	0

Modeling Means

- So far we have modeled the sample/observed var-cov matrix
- It is also possible to model the means of the observed variables and latent variables
- Useful to compare groups, experimental conditions, and longitudinal data
- Advantage over t-tests, ANOVA, conventional repeated measures designs:
 - Possibility to first evaluate measurement invariance across groups or longitudinal waves
- Main caveat: having enough subjects in each condition
- Alternative procedure to compare groups in SEM MIMIC model

Understanding Means and Intercepts in SEM


- Exogenous variables (X variables) have means
- Endogenous variables (Y variables) such as indicator variables have intercepts
 - Think of indicator variables in terms of regression equations

$$y_i = \beta_0 + \beta_1 X_{1i} + e_i$$

$$\mu_y = \beta_0 + \beta_1 \mu_{X_1}$$

$$if \ \mu_{X_1} = 0 \text{(i.e., centered)}$$

$$\mu_y = \beta_0$$


```
usevariables are drink1b drink2b drink3b drink4b;
grouping is gender (1=male 2=female); !multi-group statement
model: drink by drink1b drink2b drink3b drink4b;
```

In Mplus, in a multi-group analysis with a mean structure, both the intercepts and the factor loadings are held equal across groups as the default to specify measurement invariance.

Also means and intercepts of the latent variables of the first group are fixed at 0 while those in the other group(s) are free to vary.

Parameters and dfs

Elements:

$$(v (v+3))/2 = (4*7)/2 = 14 \times 2 (groups) = 28$$

Parameters:

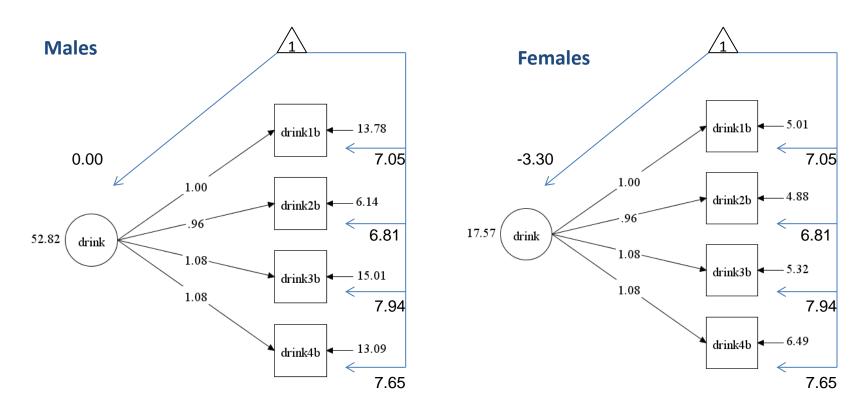
4 residuals x 2 = 8

4 intercepts

3 indicators (1 free)

1 latent variable variance x 2 = 2

1 mean (in one group)


Total parameters = 18

$$dfs = 28 - 18 = 10$$

Chi-Square Test of Model Fit		
Value Degrees of Freedom P-Value	18.672 10 0.0446	
Chi-Square Contribution From Each Gro	up	
MALE FEMALE	12.102 6.570	
RMSEA (Root Mean Square Error Of Appr	oximation)	
Estimate 90 Percent C.I. Probability RMSEA <= .05	0.065 0.010 0.261	0.110
CFI/TLI		
CFI TLI	0.994 0.993	
Chi-Square Test of Model Fit for the	Baseline Model	
Value Degrees of Freedom P-Value	1473.299 12 0.0000	
SRMR (Standardized Root Mean Square R	esidual)	
Value	0.036	

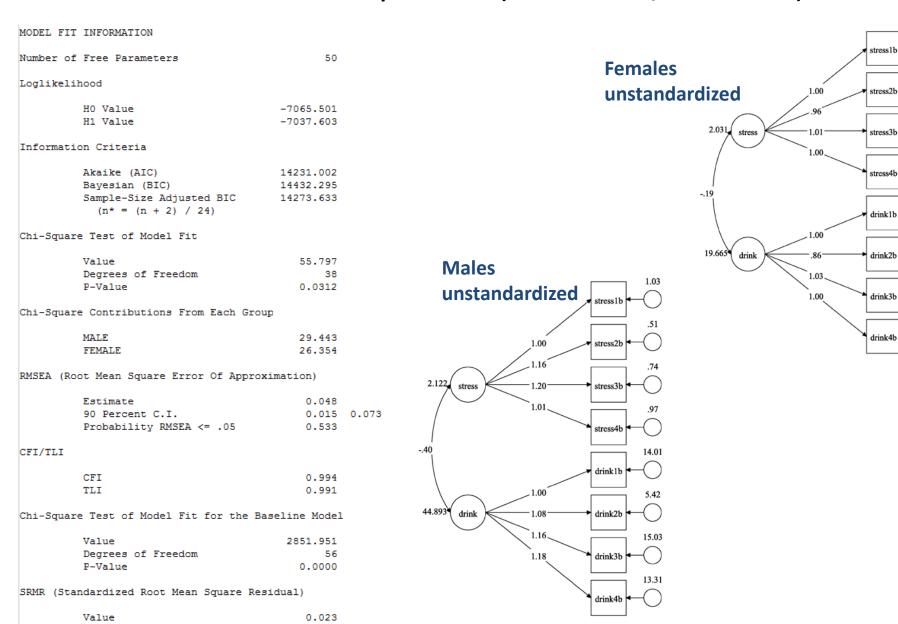
				Two-Tailed					
	Estimate	S.E.	Est./S.E.	P-Value					
Group MALE					Group FEMALE				
DRINK BY					DRINK BY				
DRINK1B	1.000	0.000	999.000	999.000	DRINK1B	1.000	0.000	999.000	999.000
DRINK2B	0.957	0.034	27.801	0.000	DRINK2B	0.957	0.034	27.801	0.000
DRINK3B	1.085	0.040	26.790	0.000	DRINK3B	1.085	0.040	26.790	0.000
DRINK4B	1.078	0.040	26.724	0.000	DRINK4B	1.078	0.040	26.724	0.000
Means					Means				
DRINK	0.000	0.000	999.000	999.000	DRINK	-3.297	0.673	-4.901	0.000
Intercepts					Intercepts				
DRINK1B	7.054	0.627	11.250	0.000	DRINK1B	7.054	0.627	11.250	0.000
DRINK2B	6.807	0.593	11.483	0.000	DRINK2B	6.807	0.593	11.483	0.000
DRINK3B	7.940	0.679	11.701	0.000	DRINK3B	7.940	0.679	11.701	0.000
DRINK4B	7.647	0.675	11.333	0.000	DRINK4B	7.647	0.675	11.333	0.000
Variances					Variances				
DRINK	52.818	6.946	7.604	0.000	DRINK	17.574	1.841	9.545	0.000
Residual Variance	s				Residual Variano				
DRINK1B	13.782	2.005	6.874	0.000	DRINK1B	5.010	0.599	8.358	0.000
DRINK2B	6.140	1.230	4.994	0.000	DRINK1B DRINK2B	4.876	0.553	8.820	0.000
DRINK3B	15.007	2.211	6.787	0.000	DRINK3B	5.325	0.555	8.203	0.000
DRINK4B	13.089	2.054	6,373	0.000	DRINK3B DRINK4B	6.489	0.649	8.899	0.000
					DRINK4B	6.489	0.729	8.899	0.000
			•						

Significant difference between males and females (but need to show invariance of intercepts first

Note that the reproduced means for males are 7.05, 6.81, 7.94, and 7.65 are the same as their intercepts because their latent variable mean = 0. The reproduced means for females are 3.76, 3.65, 4.37, and 4.09. These can be reproduced as the mean of the latent variable (-3.30) x loading + intercept.

CFA Measurement Invariance – Types of Invariance

- Dimensional invariance
- Configural invariance
- Metric (loadings) invariance
- Strong factorial (intercepts) invariance (also known as scalar invariance)
- Strict factorial invariance (indicator residual variances)
- Population heterogeneity
- Factor variances/covariances invariance
- Latent means invariance

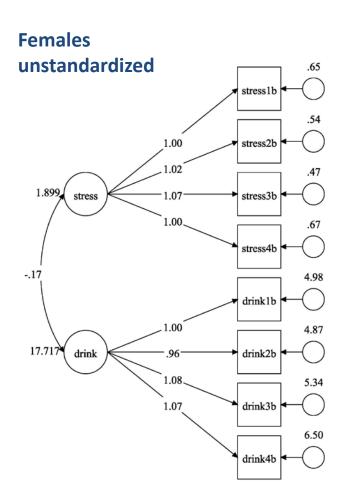

Model 1: No constrained parameters (Unconstrained/Parent model)

```
usevariables are stress1b stress2b stress3b stress4b
drink1b drink2b drink3b drink4b;
grouping is gender (1=male 2=female); !multi-group statement
model: stress by stress1b stress2b stress3b stress4b;
drink by drink1b drink2b drink3b drink4b;
[stress@0 drink@0]; !latent means in all groups fixed at zero
model female: !statements to indicate that parameters which are not constrained across groups
stress by stress2b stress3b stress4b; !to remove default loading equality constraints across groups
drink by drink2b drink3b drink4b; !do not include first indicator which was fixed
[stress1b stress2b stress3b stress4b]; !allowing all intercepts free with means at zero is like having no mean structure;
[drink1b drink2b drink3b drink4b];
output: sampstat stdyx residual modindices(5);
```

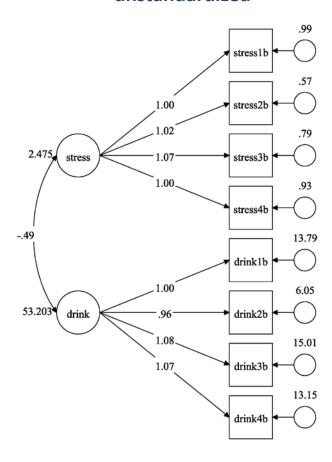
Model 1: No constrained parameters (Unconstrained/Parent model)

4.65

5.02



Model 1: No constrained parameters (Unconstrained/Parent model)


	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Group MALE				
STRESS BY				
STRESS1B	1.000	0.000	999.000	999.000
STRESS2B	1.159	0.084	13.841	0.000
STRESS3B	1.205	0.090	13.329	0.000
STRESS4B	1.006	0.084	12.025	0.000
DRINK BY				
DRINK1B	1.000	0.000	999.000	999.000
DRINK2B	1.081	0.061	17.781	0.000
DRINK3B	1.159	0.074	15.564	0.000
DRINK4B	1.183	0.073	16.317	0.000
DRINK WITH				
STRESS	-0.400	0.852	-0.469	0.639
Means				
STRESS	0.000	0.000	999.000	999.000
DRINK	0.000	0.000	999.000	999.000
Intercepts				
STRESS1B	6.383	0.146	43.651	0.000
STRESS2B	6.627	0.151	43.959	0.000
STRESS3B	6.431	0.161	39.935	0.000
STRESS4B	6.351	0.145	43.690	0.000
DRINK1B	6.922	0.632	10.961	0.000
DRINK2B	6.727	0.626	10.751	0.000
DRINK3B	8.019	0.715	11.221	0.000
DRINK4B	7.853	0.718	10.940	0.000
Variances				
STRESS	2.122	0.356	5.968	0.000
DRINK	44.893	6.742	6.659	0.000
Residual Variances	l			
STRESS1B	1.033	0.144	7.165	0.000
STRESS2B	0.508	0.104	4.898	0.000
STRESS3B	0.742	0.127	5.841	0.000
STRESS4B	0.971	0.137	7.066	0.000
DRINK1B	14.006	1.963	7.135	0.000
DRINK2B	5.422	1.235	4.392	0.000
DRINK3B	15.027	2.183	6.885	0.000
DRINK4B	13.306	2.116	6.290	0.000

Group FEMALE					
STRESS BY					
STRESS1B	1.000	0.000	999.000	999.000	
STRESS2B	0.960	0.049	19.701	0.000	
STRESS3B	1.014	0.049	20.505	0.000	
STRESS4B	0.998	0.052	19.357	0.000	
DRINK BY					
DRINK1B	1.000	0.000	999.000	999.000	
DRINK2B	0.865	0.043	19.960	0.000	
DRINK3B	1.031	0.048	21.430	0.000	
DRINK4B	0.995	0.049	20.245	0.000	
DRINK WITH					
STRESS	-0.193	0.416	-0.463	0.643	
Means					
STRESS	0.000	0.000	999.000	999.000	
DRINK	0.000	0.000	999.000	999.000	
T					
Intercepts					
STRESS1B	7.082	0.100	70.817	0.000	
STRESS2B	7.286	0.096	76.290	0.000	
STRESS3B	7.017	0.098	71.290	0.000	
STRESS4B	6.900	0.100	68.870	0.000	
DRINK1B	3.784	0.302	12.518	0.000	
DRINK2B	3.688	0.272	13.540	0.000	
DRINK3B	4.349	0.314	13.838	0.000	
DRINK4B	4.037	0.313	12.905	0.000	
Variances					
STRESS	2.031	0.229	8.869	0.000	
DRINK	19.665	2.114	9.301	0.000	
Decided Tree					
Residual Variance	_	0.072	0 715	0.000	
STRESS1B	0.629	0.072	8.715	0.000	
STRESS2B	0.556	0.064	8.631	0.000	
STRESS3B	0.486	0.062	7.786	0.000	
STRESS4B	0.648	0.073	8.840	0.000	
DRINK1B	4.646	0.593	7.838	0.000	
DRINK2B	5.019	0.558	9.001	0.000	
DRINK3B	5.342	0.659	8.101	0.000	
DRINK4B	6.562	0.731	8.981	0.000	

```
usevariables are stress1b stress2b stress3b stress4b
drink1b drink2b drink3b drink4b;
grouping is gender (1=male 2=female); !multi-group statement
model: stress by stress1b stress2b stress3b stress4b;
drink by drink1b drink2b drink3b drink4b;
[stress@0 drink@0]; !latent means in all groups fixed at zero
model female: !statements to indicate that parameters which are not constrained across groups
[stress1b stress2b stress3b stress4b]; !allowing all intercepts free with means at zero is like having no mean structure;
[drink1b drink2b drink3b drink4b];
output: sampstat stdvx residual modindices(5);
Chi-Square Test of Model Fit
        Value
                                      73.592
        Degrees of Freedom
                                                    Loadings Constrained (Nested Model): \chi^2_{(44)} = 73.59, p < .01
        P-Value
                                      0.0034
                                                    (note also CFI = 0.989)
Chi-Square Contributions From Each Group
        MALE
                                      40.096
        FEMALE
                                      33.496
                                                    Unconstrained (Parent Model) : \chi^2_{(38)} = 55.80, p < .05
RMSEA (Root Mean Square Error Of Approximation)
                                                   CFI = .994
                                       0.057
        Estimate
        90 Percent C.I.
                                      0.033 0.079
        Probability RMSEA <= .05
                                       0.289
                                                   Chi-square Difference test:
CFI/TLI
                                                   \chi^{2}_{(44)} = 73.59 - \chi^{2}_{(38)} = 55.80 = \chi^{2}_{\text{diff } (6)} = 17.79, p < .01
        CFI
                                       0.989
                                                   (crit \chi^2_{(6)} = 12.59 at p = .05 or 16.81 at p = .01)
                                       0.987
        TLI
Chi-Square Test of Model Fit for the Baseline Model
        Value
                                    2851.951
        Degrees of Freedom
        P-Value
                                      0.0000
SRMR (Standardized Root Mean Square Residual)
        Value
                                       0.048
```


Males unstandardized

MODEL MODIFICATION INDICES

NOTE: Modification indices regressed on covariates may MODINDICES (ALL).					le
Minimum M.I. value for prin	ting the	modificat	cion index	5.000	
Group MALE	M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.	
BY Statements					
DRINK BY DRINK1B	7.515	-0.174	-1.266	-0.155	
WITH Statements					
STRESS3B WITH STRESS2B	9.358	0.343	0.343	0.513	
DRINK1B WITH STRESS2B					
DRINK2B WITH STRESS2B					
DRINK3B WITH DRINK1B	5.046	-3.801	-3.801	-0.264	
DRINK3B WITH DRINK2B	6.708	4.023	4.023	0.422	
DRINK4B WITH STRESS3B	5.210	0.793	0.793	0.246	
Group FEMALE					
BY Statements					
DRINK BY DRINK1B	7.500	0.173	0.730	0.153	
WITH Statements					
DRINK1B WITH STRESS4B	7.494	-0.390	-0.390	-0.214	
DRINK2B WITH STRESS2B	5.285	-0.300	-0.300	-0.184	

Model 3: Constrained Intercepts (and Loadings)

```
usevariables are stress1b stress2b stress3b stress4b
drink1b drink2b drink3b drink4b;
grouping is gender (1=male 2=female); !multi-group statement
model: stress by stress1b stress2b stress3b stress4b;
drink by drink1b drink2b drink3b drink4b;
model female: !statements to indicate that parameters which are not constrained across groups
output: sampstat stdyx residual modindices(5);
```

Model 3 Constrained Intercepts (Nested Model): $\chi^2_{(50)}$ = 76.82, p < .01 CFI = 0.990

Model 2 Constrained Loadings (Parent Model) : $\chi^2_{(44)}$ = 73.59, p < .01 CFI = 0.989

Chi-square Difference test:

$$\chi^2_{(50)}$$
 = 76.82 - $\chi^2_{(44)}$ = 73.59 = $\chi^2_{diff(6)}$ = 3.23, ns (crit $\chi^2_{(6)}$ = 16.81 at p = .01)

Model 3: Constrained Intercepts (and Loadings)

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Group MALE				
STRESS BY				
STRESS1B	1.000	0.000	999.000	999.000
STRESS2B	1.020	0.041	24.648	0.000
STRESS3B	1.059	0.043	24.759	0.000
STRESS4B	0.989	0.043	22.956	0.000
DRINK BY				
DRINK1B	1.000	0.000	999.000	999.000
DRINK2B	0.957	0.034	27.810	0.000
DRINK3B	1.084	0.040	26.788	0.000
DRINK4B	1.078	0.040	26.725	0.000
DRINK WITH				
STRESS	-0.486	1.006	-0.483	0.629
Means				
STRESS	0.000	0.000	999.000	999.000
DRINK	0.000	0.000	999.000	999.000
Intercepts				
STRESS1B	6.447	0.141	45.728	0.000
STRESS2B	6.649	0.141	47.200	0.000
STRESS3B	6.384	0.147	43.458	0.000
STRESS4B	6.311	0.139	45.291	0.000
DRINK1B	7.054	0.627	11.249	0.000
DRINK2B	6.807	0.593	11.483	0.000
DRINK3B	7.940	0.679	11.701	0.000
DRINK4B	7.646	0.675	11.333	0.000
Variances				
STRESS	2.502	0.342	7.316	0.000
DRINK	52.835	6.948	7.605	0.000
Residual Variance	3			
STRESS1B	0.998	0.145	6.888	0.000
STRESS2B	0.564	0.104	5.424	0.000
STRESS3B	0.795	0.128	6.211	0.000
STRESS4B	0.933	0.137	6.832	0.000
DRINK1B	13.773	2.004	6.871	0.000
DRINK2B	6.134	1.229	4.990	0.000
DRINK3B	15.014	2.212	6.789	0.000
DRINK4B	13.104	2.055	6.376	0.000

Group FEMALE					
STRESS BY					
STRESS1B	1.000	0.000	999.000	999.000	
STRESSIB STRESS2B	1.020	0.041	24.648	0.000	
STRESS2B					
	1.059	0.043	24.759	0.000	
STRESS4B	0.989	0.043	22.956	0.000	
DRINK BY					
DRINK1B	1.000	0.000	999.000	999.000	
DRINK2B	0.957	0.034	27.810	0.000	
DRINK3B	1.084	0.040	26.788	0.000	
DRINK4B	1.078	0.040	26.725	0.000	
DRINK WITH					
STRESS	-0.171	0.383	-0.448	0.654	
Means					
STRESS	0.612	0.162	3.777	0.000	
DRINK	-3.297	0.673	-4.901	0.000	
Intercepts					
STRESS1B	6.447	0.141	45.728	0.000	
STRESS2B	6.649	0.141	47.200	0.000	
STRESS3B	6.384	0.147	43.458	0.000	
STRESS4B	6.311	0.139	45.291	0.000	
DRINK1B	7.054	0.627	11.249	0.000	
DRINK2B	6.807	0.593	11.483	0.000	
DRINK3B	7.940	0.679	11.701	0.000	
DRINK4B	7.646	0.675	11.333	0.000	
Variances					
STRESS	1.921	0.208	9.237	0.000	
DRINK	17.581	1.842	9.547	0.000	
Residual Variances					
STRESS1B	0.645	0.073	8.892	0.000	
STRESS2B	0.542	0.064	8.484	0.000	
STRESS3B	0.476	0.062	7.725	0.000	
STRESS4B	0.669	0.074	9.060	0.000	
DRINK1B	5.003	0.599	8.349	0.000	
DRINK2B	4.876	0.553	8.820	0.000	
DRINK3B	5.333	0.650	8.208	0.000	
DRINK4B	6.489	0.729	8.900	0.000	
GLIMIA	0.705	0.723	0.500	0.000	

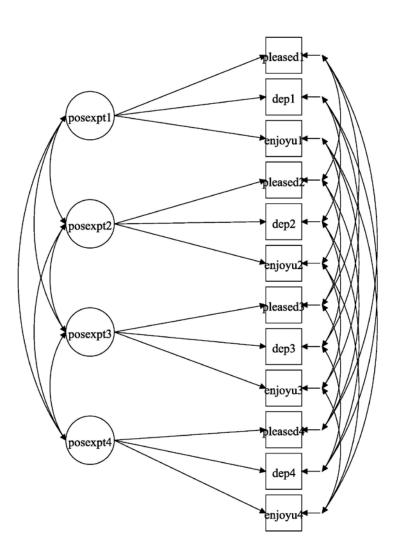
Model 4: Constrained Indicator Residual Variances (and Loadings and Intercepts)

```
usevariables are stress1b stress2b stress3b stress4b
drink1b drink2b drink3b drink4b;
grouping is gender (1=male 2=female); !multi-group statement
model: stress by stress1b stress2b stress3b stress4b;
drink by drink1b drink2b drink3b drink4b;
stress1b (1)
stress2b (2)
stress3b (3)
stress4b (4)
drink1b (5)
drink2b (6)
drink2b (6)
drink3b (7)
drink4b (8); !constraining residuals
output: sampstat stdyx residual modindices(5);
```

Model 4 Constrained Indicator Residuals (Nested Model): $\chi^2_{(58)}$ = 190.62, p < .01 CFI = 0.953

Model 3 Constrained Intercepts (Parent Model) : $\chi^2_{(50)}$ = 76.82, p < .01 CFI = 0.990

Chi-square Difference test:


$$\chi^2_{(58)}$$
 = 190.62 - $\chi^2_{(50)}$ = 76.82 = $\chi^2_{diff(8)}$ = 113.80, p < .001 (crit $\chi^2_{(8)}$ = 26.12 at p = .001)

Other Models of Invariance

```
usevariables are stress1b stress2b stress3b stress4b
drink1b drink2b drink3b drink4b;
grouping is gender (1=male 2=female); !multi-group statement
model: stress by stress1b stress2b stress3b stress4b;
drink by drink1b drink2b drink3b drink4b;
stress1b (1)
stress2b (2)
stress3b (3)
stress4b (4)
drink1b (5)
drink2b (6)
drink3b (7)
drink4b (8); !constraining residuals
!stress (9); invariance of factor variance and covariance
!drink (10);
!stress with drink (11);
!model female: [stress@0 drink@0]; invariance of factor means;
output: sampstat stdyx residual modindices(5);
```

Longitudinal Measurement Invariance: Unconstrained Model

```
usevariables are pleased1 pleased2 pleased3 pleased4
dep1 dep2 dep3 dep4
enjoyu1 enjoyu2 enjoyu3 enjoyu4;
model:
POSEXPt1 by pleased1 dep1 enjoyu1;
POSEXPt2 by pleased2 dep2 enjoyu2;
POSEXPt3 by pleased3 dep3 enjoyu3;
POSEXPt4 by pleased4 dep4 enjoyu4;
pleased1 with pleased2 pleased3 pleased4; ! allowing residu
pleased2 with pleased3 pleased4;
pleased3 with pleased4;
dep1 with dep2 dep3 dep4;
dep2 with dep3 dep4;
dep3 with dep4;
enjoyu1 with enjoyu2 enjoyu3 enjoyu4;
enjoyu2 with enjoyu3 enjoyu4;
enjoyu3 with enjoyu4;
output: sampstat residual stdyx modindices;
```



```
usevariables are pleased1 pleased2 pleased3 pleased4
                                                                                Chi-Square Test of Model Fit
dep1 dep2 dep3 dep4
enjoyu1 enjoyu2 enjoyu3 enjoyu4;
                                                                                          Value
                                                                                                                            95.680
model:
                                                                                          Degrees of Freedom
POSEXPt1 by pleased1 dep1 (1)
                                                                                          P-Value
                                                                                                                            0.0000
enjovu1 (2);
POSEXPt2 by pleased2 dep2 (1)
                                                                                RMSEA (Root Mean Square Error Of Approximation)
enjoyu2 (2);
POSEXPt3 by pleased3 dep3 (1)
                                                                                          Estimate
                                                                                                                             0.063
                                                                                          90 Percent C.I.
                                                                                                                             0.048 0.079
enjoyu3 (2);
                                                                                          Probability RMSEA <= .05
                                                                                                                             0.074
POSEXPt4 by pleased4 dep4 (1)
enjoyu4 (2);
pleased1 with pleased2 pleased3 pleased4; ! allowing residuals to correlate acCFI/TLI
pleased2 with pleased3 pleased4;
                                                                                          CFI
                                                                                                                             0.988
pleased3 with pleased4;
                                                                                          TT.T
                                                                                                                             0.977
dep1 with dep2 dep3 dep4;
dep2 with dep3 dep4;
                                                                                Chi-Square Test of Model Fit for the Baseline Model
dep3 with dep4;
enjoyu1 with enjoyu2 enjoyu3 enjoyu4;
                                                                                          Value
                                                                                                                          4880.751
enjoyu2 with enjoyu3 enjoyu4;
                                                                                          Degrees of Freedom
enjoyu3 with enjoyu4;
                                                                                          P-Value
                                                                                                                            0.0000
output: sampstat residual stdyx modindices;
                                                                                SRMR (Standardized Root Mean Square Residual)
```

Value

0.038

Model 2 Constrained Loadings (Nested Model):

$$\chi^{2}_{(36)}$$
 = 95.68, p < .01 CFI = 0.988

Model 1 Unconstrained (Parent Model):

$$\chi^{2}_{(30)}$$
 = 54.48, p < .01 CFI = 0.995

Chi-square Difference test:

$$\chi^2_{(36)}$$
 = 95.68 - $\chi^2_{(30)}$ = 54.48 = $\chi^2_{diff(6)}$ = 41.20, p < .001 (crit $\chi^2_{(6)}$ = 22.46 at p = .001)

Conclusion:?

MODEL RESULTS

Unconstrained loadings (previous model)

MODEL RESULTS				
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
POSEXPT1 BY				
PLEASED1	1.000	0.000	999.000	999.000
DEP1	-2.908	0.252	-11.532	0.000
ENJOYU1	1.039	0.088	11.811	0.000
POSEXPT2 BY				
PLEASED2	1.000	0.000	999.000	999.000
DEP2	-2.056	0.194	-10.582	0.000
ENJOYU2	0.980	0.081	12.080	0.000
POSEXPT3 BY				
PLEASED3	1.000	0.000	999.000	999.000
DEP3	-1.743	0.176	-9.907	0.000
ENJOYU3	0.950	0.080	11.812	0.000
POSEXPT4 BY				
PLEASED4	1.000	0.000	999.000	999.000
DEP4	-2.155	0.217	-9.947	0.000
ENJOYU4	0.957	0.091	10.496	0.000

Constrained Loadings

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
POSEXPT1 BY				
PLEASED1	1.000	0.000	999.000	999.000
DEP1	-2.209	0.190	-11.636	0.000
ENJOYU1	0.982	0.078	12.577	0.000
POSEXPT2 BY				
PLEASED2	1.000	0.000	999.000	999.000
DEP2	-2.209	0.190	-11.636	0.000
ENJOYU2	0.982	0.078	12.577	0.000
POSEXPT3 BY				
PLEASED3	1.000	0.000	999.000	999.000
DEP3	-2.209	0.190	-11.636	0.000
ENJOYU3	0.982	0.078	12.577	0.000
POSEXPT4 BY				
PLEASED4	1.000	0.000	999.000	999.000
DEP4	-2.209	0.190	-11.636	0.000
ENJOYU4	0.982	0.078	12.577	0.000

MODEL MODIFICATION INDICES

NOTE: Modification indices for direct effects of observed dependent variables regressed on covariates may not be included. To include these, request MODINDICES (ALL).

Minimum 1	и. І.	value	for	printing the	modifica	tion index	10.000
				M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
BY Stater	nent	s					
POSEXPT1	BY	DEP1		24.360	-0.497	-0.742	-0.118
POSEXPT2	BY	DEP1		21.915	-0.634	-0.959	-0.152
POSEXPT2	BY	DEP3		10.338	0.317	0.479	0.078
POSEXPT3	BY	DEP1		24.294	-0.686	-1.013	-0.161
POSEXPT3	BY	DEP3		14.403	0.304	0.449	0.073
POSEXPT4	BY	DEP1		20.037	-0.609	-0.927	-0.147
POSEXPT4	BY	DEP3		13.290	0.362	0.552	0.090
WITH Stat	teme	ents					
ENJOYU1	WIT	TH DEP1		12.052	-0.629	-0.629	-0.113

Model 3: Constrained Intercept Model Syntax

```
usevariables are pleased1 pleased2 pleased3 pleased4
dep1 dep2 dep3 dep4
enjoyu1 enjoyu2 enjoyu3 enjoyu4;
model:
POSEXPt1 by pleased1 dep1 (1)
enjoyu1 (2);
POSEXPt2 by pleased2 dep2 (1)
enjoyu2 (2);
POSEXPt3 by pleased3 dep3 (1)
enjoyu3 (2);
POSEXPt4 by pleased4 dep4 (1)
enjoyu4 (2);
[pleased1 pleased2 pleased3 pleased4] (3);
[dep1 dep2 dep3 dep4] (4);
[enjoyu1 enjoyu2 enjoyu3 enjoyu4] (5);
pleased1 with pleased2 pleased3 pleased4; ! allowing residuals to correlate across time
pleased2 with pleased3 pleased4;
pleased3 with pleased4;
dep1 with dep2 dep3 dep4;
dep2 with dep3 dep4;
dep3 with dep4;
enjoyu1 with enjoyu2 enjoyu3 enjoyu4;
enjoyu2 with enjoyu3 enjoyu4;
enjoyu3 with enjoyu4;
[POSEXPt1@0];
[POSEXPt2 POSEXPt3 POSEXPt4];
output: sampstat residual stdyx modindices;
```