PSY 9556B (March 19) Mediation and Moderation continued Simulation of a Longitudinal Mediation Data Set

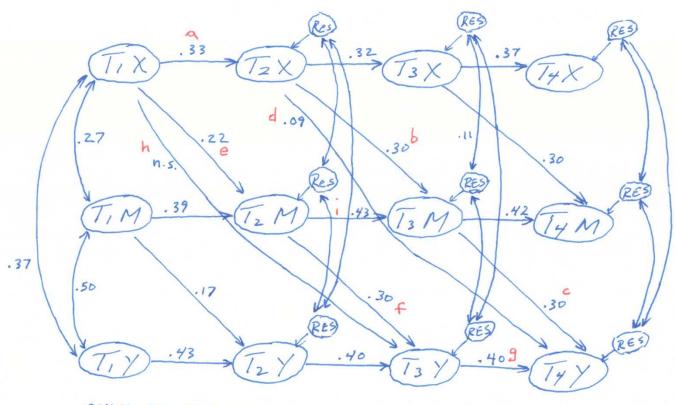
```
TITLE: Data generation for Longitudinal Mediation Model.
MONTECARLO:
NAMES ARE T1v1 T1v2 T1v3 T2v1 T2v2 T2v3 T3v1 T3v2 T3v3 T4v1 T4v2 T4v3
T1x1 T1x2 T1x3 T2x1 T2x2 T2x3 T3x1 T3x2 T3x3 T4x1 T4x2 T4x3
T1m1 T1m2 T1m3 T2m1 T2m2 T2m3 T3m1 T3m2 T3m3 T4m1 T4m2 T4m3;
NOBSERVATIONS = 1500;
NREPS = 5;
SEED = 53487;
SAVE = mediation.dat;
MODEL POPULATION:
T1Y by T1y1*.7 T1y2*.7 T1y3*.7;
T2Y by T2y1*.7 T2y2*.7 T2y3*.7;
T3Y by T3y1*.7 T3y2*.7 T3y3*.7;
T4Y by T4y1*.7 T4y2*.7 T4y3*.7;
T1X by T1x1*.7 T1x2*.7 T1x3*.7;
T2X by T2x1*.7 T2x2*.7 T2x3*.7;
T3X by T3x1*.7 T3x2*.7 T3x3*.7;
T4X by T4x1*.7 T4x2*.7 T4x3*.7;
Tim by Timi*.7 Tim2*.7 Tim3*.7;
T2m by T2m1*.7 T2m2*.7 T2m3*.7;
T3m by T3m1*.7 T3m2*.7 T3m3*.7;
T4m by T4m1*.7 T4m2*.7 T4m3*.7;
T1y1-T1y3*.51; T2y1-T2y3*.51; T3y1-T3y3*.51 T4y1-T4y3*.51;
T1x1-T1x3*.51; T2x1-T2x3*.51; T3x1-T3x3*.51 T4x1-T4x3*.51;
T1m1-T1m3*.51; T2m1-T2m3*.51; T3m1-T3m3*.51 T4m1-T4m3*.51;
T1Y01; T2Y01; T3Y01; T4Y01; T1X01; T2X01; T3X01; T4X01;
T1m@1; T2m@1; T3m@1; T4m@1;
[T1v1-T1v3*8 T2v1-T2v3*8 T3v1-T3v3*8 T4v1-T4v3*8];
[T1x1-T1x3*50 T2x1-T2x3*50 T3x1-T3x3*50 T4x1-T4x3*50];
[T1m1-T1m3*5 T2m1-T2m3*5 T3m1-T3m3*5 T4m1-T4m3*5];
```

Continued next slide

Simulation of a Longitudinal Mediation Data Set (continued)

```
T2Y on T1Y*.5;
T3Y on T2Y*.5 T1Y*.2:
T4Y on T3Y*.4 T2Y*.1 T1Y*.05;
T2X on T1X*.4;
T3X on T2X*.4 T1X*.1:
T4X on T3X*.4 T2X*.1 T1X*.05;
T2M on T1M*.4;
T3M on T2M*.4 T1M*.1;
T4M on T3M*.4 T2M*.1 T1M*.05;
T2Y ON T1M*.2;
T3Y ON T2M*.3 T1X*.10;
T2M ON T1X*.3;
T4Y ON T3M*.3 T2X*.10;
T3M ON T2X*.3;
T4M ON T3X*.3;
T1X WITH T1M*.3 T1Y*.4;
T1M WITH T1Y*.5;
T2X WITH T2M*.1 T2Y*.1;
T2M WITH T2Y*.1;
T3X WITH T3M*.1 T3Y*.1:
T3M WITH T3Y*.1;
T4X WITH T4M*.1 T4Y*.1;
T4M WITH T4Y*.1;
ANALYSIS: TYPE = RANDOM;
ALGORITHM = INTEGRATION;
```

Analysis Based on Sample (n=1500) from Simulated Population


```
TITLE: Example with longitudinal latent moderation;
                                                                 !residual correlations across time for loadings;
                                                                  !none of these were significant so I removed them;
DATA: file is mediation.dat:
                                                                  !T1y1 with T2y1 T3y1 T4y1;
VARIABLE:
                                                                 !T2y1 with T3y1 T4y1;
NAMES ARE T1y1 T1y2 T1y3 T2y1 T2y2 T2y3 T3y1 T3y2 T3y3 T4y1
                                                                  !T3y1 with T4y1;
T4y2 T4y3 T1x1 T1x2 T1x3 T2x1 T2x2 T2x3 T3x1 T3x2 T3x3 T4x1
                                                                  !T1y2 with T2y2 T3y2 T4y2;
T4x2 T4x3 T1m1 T1m2 T1m3 T2m1 T2m2 T2m3 T3m1 T3m2 T3m3 T4m1
                                                                  !T2y2 with T3y2 T4y2;
T4m2 T4m3;
                                                                  !T3y2 with T4y2;
USEVARIABLES ARE T1y1 T1y2 T1y3 T2y1 T2y2 T2y3 T3y1 T3y2 T3y3
                                                                  !T1v3 with T2v3 T3v3 T4v3;
T4y1 T4y2 T4y3 T1x1 T1x2 T1x3 T2x1 T2x2 T2x3 T3x1 T3x2 T3x3
                                                                  !T2v3 with T3v3 T4v3;
T4x1 T4x2 T4x3 T1m1 T1m2 T1m3 T2m1 T2m2 T2m3 T3m1 T3m2 T3m3
                                                                  !T3v3 with T4v3;
T4m1 T4m2 T4m3:
                                                                  !T1m1 with T2m1 T3m1 T4m1;
ANALYSIS:
                                                                  !T2m1 with T3m1 T4m1;
bootstrap = 1000;
                                                                  !T3m1 with T4m1:
MODEL:
                                                                  !T1m2 with T2m2 T3m2 T4m2;
T1Y by T1v1 T1v2 T1v3;
                                                                  !T2m2 with T3m2 T4m2;
T2Y by T2y1 T2y2 T2y3;
                                                                  !T3m2 with T4m2;
T3Y by T3y1 T3y2 T3y3;
                                                                  !T1m3 with T2m3 T3m3 T4m3;
                                                                  !T2m3 with T3m3 T4m3;
T4Y by T4v1 T4v2 T4v3;
                                                                 !T3m3 with T4m3;
T1X by T1x1 T1x2 T1x3;
                                                                  !T1x1 with T2x1 T3x1 T4x1:
T2X by T2x1 T2x2 T2x3;
                                                                  !T2x1 with T3x1 T4x1:
T3X by T3x1 T3x2 T3x3;
                                                                  !T3x1 with T4x1:
T4X by T4x1 T4x2 T4x3;
                                                                  !T1x2 with T2x2 T3x2 T4x2:
Tim by Timi Tim2 Tim3;
                                                                  !T2x2 with T3x2 T4x2:
T2m by T2m1 T2m2 T2m3;
                                                                 !T3x2 with T4x2;
T3m by T3m1 T3m2 T3m3;
                                                                  !T1x3 with T2x3 T3x3 T4x3:
T4m by T4m1 T4m2 T4m3;
                                                                  !T2x3 with T3x3 T4x3:
                                                                  !T3x3 with T4x3;
```

Continued next slide

Analysis Based on Sample (n=1500) from Simulated Population

```
!autoregressive paths
T2Y on T1Y;
T3Y on T2Y T1Y;
T4Y on T3Y T2Y T1Y;
T2X on T1X:
T3X on T2X T1X;
T4X on T3X T2X T1X;
T2M on T1M;
T3M on T2M T1M;
T4M on T3M T2M T1M;
correlations between latent variables/residuals at each time point!
T1X WITH T1M T1Y;
T1M WITH T1Y;
T2X WITH T2M T2Y;
T2M WITH T2Y;
T3X WITH T3M T3Y;
T3M WITH T3Y;
T4X WITH T4M T4Y;
T4M WITH T4Y;
!cross-lagged paths
T2Y ON T1M;
T3Y ON T2M T1X;
T2M ON T1X;
T4Y ON T3M T2X;
T3M ON T2X;
T4M ON T3X;
MODEL INDIRECT:
T3Y IND T1X;
T4Y IND T2X:
T4Y IND T1X; !total indirect effect from beginning to end
OUTPUT: sampstat stdyx modindices tech4 cinterval(bcbootstrap);
```

Number of Free Parameters	146		If we had used a smalle	r sample n= 3	17
Loglikelihood				•	
_			Number of Free Parameters	146	
HO Value	-70791.521		Loglikelihood		
H1 Value	-70525.206		Dogiikelinood		
			HO Value	-14705.598	
Information Criteria			H1 Value	-14411.009	
Akaike (AIC)	141875.043		Information Criteria		
Bayesian (BIC)	142650.773		Infolmation officeria		
Sample-Size Adjusted BIC	142186.972		Akaike (AIC)	29703.195	
(n* = (n + 2) / 24)			Bavesian (BIC)	30250.607	
			Sample-Size Adjusted BIC	29787.538	
Chi-Square Test of Model Fit			(n* = (n + 2) / 24)		
Value	532.630		Chi-Square Test of Model Fit		
Degrees of Freedom	556				
P-Value	0.7552		Value	589.177	
			Degrees of Freedom	556	
RMSEA (Root Mean Square Error Of Appr	coximation)		P-Value	0.1597	
Estimate	0.000		RMSEA (Root Mean Square Error Of App	proximation)	
90 Percent C.I.	0.000	0.006			
Probability RMSEA <= .05	1.000		Estimate	0.014	
-			90 Percent C.I.	0.000 0.0	23
CFI/TLI			Probability RMSEA <= .05	1.000	
CFI	1.000		CFI/TLI		
TLI	1.001				
101	1.001		CFI	0.992	
Chi-Square Test of Model Fit for the	Baseline Model	L	TLI	0.991	
***	40700		Chi-Square Test of Model Fit for the	Baseline Model	
Value	19708.555				
Degrees of Freedom	630		Value	4935.968	
P-Value	0.0000		Degrees of Freedom	630	
SRMR (Standardized Root Mean Square R	Residual)		P-Value	0.0000	
,	,		SRMR (Standardized Root Mean Square	Residual)	
Value	0.019		Dam (Dodinatarzea noot mean square	nebidual)	
8			Value	0.044	

IN FIGURE

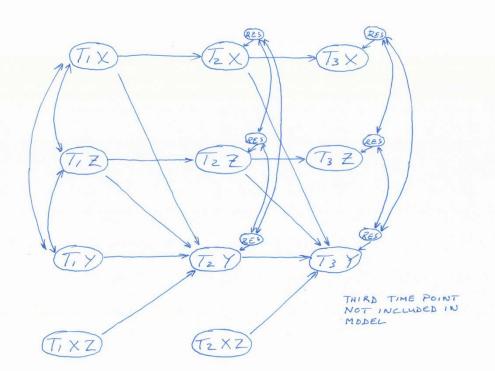
MEDIATED PATHS

CONFIDENCE INTERVALS OF STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

STDYX Standardization

000000000000000000000000000000000000000	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
Effects from T1X	to T3Y						
Total Total indirect							
Specific indire							
T3Y							
T2M T1X	0.036	0.043	0.047	0.065	0.084	0.087	0.094
Direct T3Y							
}	-0.073	-0.053	-0.043	0.009	0.062	0.072	0.092
Effects from T2X	to T4Y						
Total Total indirect						0.231 0.115	
Specific indirect		0.065	0.069	0.090	0.111	0.115	0.122
T4Y							
T3M T2X	0.057	0.065	0.069	0.090	0.111	0.115	0.122
Direct							
T4Y T2X	0.013	0.031	0.041	0.089	0.137	0.146	0.164

		Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
Ef	fects from T1X	to T4Y						
	Total Total indirect	0.075 0.075	0.086 0.086	0.091 0.091	0.118 0.118	0.146 0.146		0.161 0.161
	Specific indire	ect						
	T4Y							
	T3Y T1X	-0.030	-0.022	-0.018	0.004	0.025	0.029	0.037
	T4Y							
	T2X T1X	0.003	0.010	0.013	0.030	0.046	0.049	0.056
	T4Y							
	T3Y T2M							
	T1X	0.012	0.016	0.017	0.026	0.035	0.037	0.040
	T4Y T3M							
	T2X T1X	0.017	0.020	0.022	0.030	0.038	0.040	0.043
	T4Y							
	T3M T2M							
	T1X	0.015	0.018	0.020	0.029	0.038	0.039	0.043


	ESTIMATED CORE				
	T1Y	T2Y	T3Y	T4Y	T1X
T1Y	1.000				
T2Y	0.516	1.000			
T3Y	0.499	0.587	1.000		
T4Y	0.327	0.401	0.563	1.000	
T1X	0.371	0.206	0.265	0.237	1.000
T2X	0.123	0.124	0.128	0.266	0.333
T3X	0.092	0.069	0.133	0.167	0.248
T4X	0.052	0.044	0.068	0.150	0.140
T1M	0.497	0.386	0.392	0.291	0.270
T2M	0.273	0.262	0.460	0.382	0.324
T3M	0.180	0.170	0.284	0.470	0.252
T4M	0.156	0.135	0.211	0.336	0.216
	T2X	T3X	T4X	T1M	T2M
T2X	1.000				
T3X	0.370	1.000			
T4X	0.296	0.426	1.000		
T1M	0.090	0.067	0.038	1.000	
T2M	0.167	0.099	0.062	0.444	1.000
T3M	0.372	0.240	0.147	0.271	0.503
T4M	0.280	0.407	0.215	0.235	0.320
	ESTIMATED CORE	RELATION MATRIX	FOR THE LATER	NT VARIABLES	
	T3M	T4M			
T3M	1.000				
T4M	0.535	1.000			

Moderation with Latent Variables in Longitudinal Design Simulation of a Longitudinal Moderation Data Set

```
TITLE: Data generation syntax.
MONTECARLO:
NAMES ARE T1y1 T1y2 T1y3 T2y1 T2y2 T2y3 T3y1 T3y2 T3y3
T1x1 T1x2 T1x3 T2x1 T2x2 T2x3 T3x1 T3x2 T3x3
T1z1 T1z2 T1z3 T2z1 T2z2 T2z3 T3z1 T3z2 T3z3;
NOBSERVATIONS = 1500:
NREPS = 5;
SEED = 53487;
SAVE = moderation3.dat:
MODEL POPULATION:
T1Y by T1y1*.7 T1y2*.7 T1y3*.7;
T2Y by T2y1*.7 T2y2*.7 T2y3*.7;
T3Y by T3y1*.7 T3y2*.7 T3y3*.7;
T1X by T1x1*.7 T1x2*.7 T1x3*.7;
T2X by T2x1*.7 T2x2*.7 T2x3*.7;
T3X by T3x1*.7 T3x2*.7 T3x3*.7;
T1Z by T1z1*.7 T1z2*.7 T1z3*.7;
T2Z by T2z1*.7 T2z2*.7 T2z3*.7;
T3Z by T3z1*.7 T3z2*.7 T3z3*.7;
T1v1-T1v3*.51; T2v1-T2v3*.51; T3v1-T3v3*.51;
T1x1-T1x3*.51; T2x1-T2x3*.51; T3x1-T3x3*.51;
T1z1-T1z3*.51; T2z1-T2z3*.51; T3z1-T3z3*.51;
T1Y01; T2Y01; T3Y01; T1X01; T2X01; T3X01; T1Z01; T2Z01; T3Z01;
[T1y1-T1y3*8 T2y1-T2y3*8 T3y1-T3y3*8];
[T1x1-T1x3*50 T2x1-T2x3*50 T3x1-T3x3*50];
[T1z1-T1z3*5 T2z1-T2z3*5 T3z1-T3z3*5];
T1XZ | T1X xwith T1Z; !note that the syntax for interaction is xwith not with
T2XZ | T2X xwith T2Z;
```

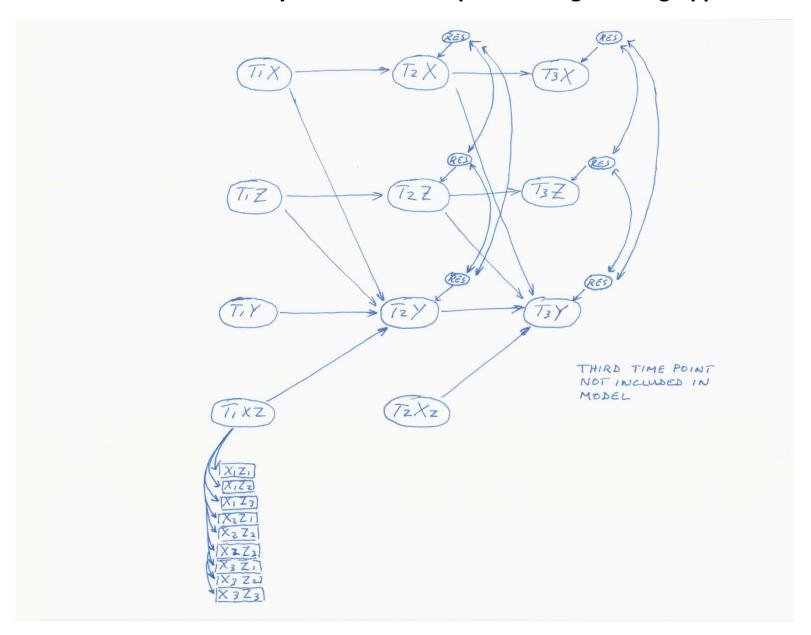
Continued next slide

Moderation with Latent Variables in Longitudinal Design Simulation of a Longitudinal Moderation Data Set


```
T2Y on T1Y*.4;
T3Y on T2Y*.4 T1Y*.1;
T2X on T1X*.7;
T3X on T2X*.7 T1X*.2;
T2Z on T1Z*.5;
T3Z on T2Z*.5 T1Z*.5;
T2Y on T1X*.1 T1Z*.1 T1XZ*.2;
T3Y on T2X*.1 T2Z*.1 T2XZ*.2;
T1Y with T1X*.2 T1Z*.2;
T1X with T1Z*.1;
T2Y with T2X*.05 T2Z*.05;
T2X with T2Z*.05;
T3Y with T3X*.05 T2X*.05;
T3X with T2X*.05;
ANALYSIS:TYPE = RANDOM;
ALGORITHM = INTEGRATION;
```

Moderation Analysis Based on Sample (n=1500) from Simulated Population

```
TITLE: Example with longitudinal latent moderation;
DATA: file is moderation.dat:
VARIABLE:
NAMES ARE T1y1 T1y2 T1y3 T2y1 T2y2 T2y3 T3y1 T3y2 T3y3
T1x1 T1x2 T1x3 T2x1 T2x2 T2x3 T3x1 T3x2 T3x3
T1z1 T1z2 T1z3 T2z1 T2z2 T2z3 T3z1 T3z2 T3z3;
USEVARIABLES ARE T1y1 T1y2 T1y3 T2y1 T2y2 T2y3
T1x1 T1x2 T1x3 T2x1 T2x2 T2x3
T1z1 T1z2 T1z3 T2z1 T2z2 T2z3;
ANALYSIS: TYPE = RANDOM;
ALGORITHM = INTEGRATION;
!estimator = ml;
MODEL:
T1Y by T1y1* T1y2 T1y3;
T2Y by T2y1* T2y2 T2y3;
T1X by T1x1* T1x2 T1x3;
T2X by T2x1* T2x2 T2x3;
T1Z by T1z1* T1z2 T1z3;
T2Z by T2z1* T2z2 T2z3;
T1Y01; T2Y01; T1X01; T2X01; T1Z01; T2Z01;
T1XZ | T1X xwith T1Z; !note that the syntax for interaction is xwith not with
T2Y on T1Y;
T2X on T1X;
T2Z on T1Z:
T2Y on T1X T1Z T1XZ;
T1Y with T1X T1Z:
T1X with T1Z:
T2Y with T2X T2Z:
T2X with T2Z:
OUTPUT: sampstat;
```


Moderation Analysis Based on Sample (n=1500) from Simulated Population

MODEL FIT INFORMATION								
Number of Free Parame	ers	66						
Loglikelihood								
HO Value HO Scaling (for MLR	Correction Factor	-35429.971 0.9952						
Information Criteria			T2Y	ON				
	IC)	70991.943 71342.615 71132.952	T1Y T1X T1Z T1XZ	ON	0.418 0.116 0.075 0.171	0.038 0.036	2.087	0.002 0.037
			T2X T1X	ON	0.711	0.046	15.340	0.000
					0.711	0.010	13.510	0.000
			T2Z T1Z	ON	0.565	0.042	13.517	0.000
			T1Y T1X	WITH	0.236	0.032	7.389	0.000
			T1Z		0.204		6.136	
			T1X T1Z	WITH	0.094	0.033	2.876	0.004
			T2Y	WITH				
			T2X T2Z		-0.014 -0.013			
			T2X T2Z	WITH	0.106	0.039	2.730	0.006

compute x1z1 = x1*z1. compute x1z2 = x1*z2. compute x1z3 = x1*z3. compute x2z1 = x2*z1. compute x2z2 = x2*z2. compute x2z3 = x2*z3. compute x3z1 = x3*z1. compute x3z2 = x3*z2. compute x3z3 = x3*z3. execute. REGRESSION REGRESSION REGRESSION /MISSING LISTWISE /MISSING LISTWISE /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /STATISTICS COEFF OUTS R ANOVA /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /CRITERIA=PIN(.05) POUT(.10) /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /NOORIGIN /NOORIGIN /DEPENDENT x1z1 /DEPENDENT x2z1 /DEPENDENT x3z1 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /SAVE RESID. /SAVE RESID. /SAVE RESID. REGRESSION REGRESSION REGRESSION /MISSING LISTWISE /MISSING LISTWISE /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /STATISTICS COEFF OUTS R ANOVA /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /CRITERIA=PIN(.05) POUT(.10) /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /NOORIGIN /NOORIGIN /DEPENDENT x3z2 /DEPENDENT x1z2 /DEPENDENT x2z2 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /SAVE RESID. /SAVE RESID. /SAVE RESID. REGRESSION REGRESSION REGRESSION /MISSING LISTWISE /MISSING LISTWISE /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /STATISTICS COEFF OUTS R ANOVA /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /CRITERIA=PIN(.05) POUT(.10) /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /NOORIGIN /NOORIGIN /DEPENDENT x3z3 /DEPENDENT x2z3 /DEPENDENT x1z3 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /METHOD=ENTER x1 x2 x3 z1 z2 z3 /SAVE RESID.

/SAVE RESID

/SAVE RESID.

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 112

Loglikelihood

HO Value -51524.762 H1 Value -51411.297

Information Criteria

Akaike (AIC) 103273.523
Bayesian (BIC) 103868.604
Sample-Size Adjusted BIC 103512.811
(n* = (n + 2) / 24)

Chi-Square Test of Model Fit

Value 226.929
Degrees of Freedom 293
P-Value 0.9984

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.000
90 Percent C.I. 0.000 0.000
Probability RMSEA <= .05 1.000

CFI/TLI

CFI 1.000 TLI 1.006

Chi-Square Test of Model Fit for the Baseline Model

Value 14640.524
Degrees of Freedom 351
P-Value 0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.016

T2Y	ON										
T1Y		0.418	0.041	10.222	0.000						
T1X		0.120	0.037	3.267	0.001						
T1Z		0.073	0.036	2.007	0.045						
TIIN	L	0.178	0.043	4.173	0.000						
T2Z	ON										
T1Z		0.567	0.042	13.461	0.000						
T2X	ON										
T1X		0.711	0.047	15.276	0.000						
T1X	WITH						N A m l	~ I V / C / f.	ااء مما	۱۵۱ ما	
T1IN		0.000	0.000	999.000	999.000		ivipiu	s LMS (fr	Om Siid	ле тз)	
T1Y		0.235	0.032	7.259	0.000		-				
111		0.235	0.032	7.259	0.000	T2Y	ON				
						T1Y	ON	0.418	0.040	10.482	0.000
T1Z	WITH					T1X		0.116	0.038	3.096	0.002
TIIN	Γ	0.000	0.000	999.000	999.000	T1Z		0.075	0.036	2.087	0.037
T1Y		0.204	0.033	6.170	0.000	T1XZ		0.171	0.038	4.453	0.000
T1X		0.096	0.033	2.874	0.004						
						T2X	ON				
T2X	WITH					T1X		0.711	0.046	15.340	0.000
T2Z		0.106	0.038	2.765	0.006						
T2Y		-0.014	0.038	-0.372	0.710	T2Z	ON				
				3.3.2		T1Z		0.565	0.042	13.517	0.000
T2Z	WITH										
T2Y	WIIII	-0.013	0.037	-0.361	0.718	T1Y	WITH				
121		-0.013	0.037	-0.361	0.716	T1X		0.236	0.032	7.389	0.000
						T1Z		0.204	0.033	6.136	0.000
T1INT	WITH										
T1Y		0.027	0.040	0.680	0.496	T1X	WITH				
						T1Z		0.094	0.033	2.876	0.004
						max.					
						T2Y T2X	WITH	-0.014	0.036	-0.394	0.694
						TZZ		-0.014	0.036	-0.333	0.694
						122		-0.013	0.030	-0.333	0.739
						T2X	WITH				
						T2Z		0.106	0.039	2.730	0.006
								0.200	0.003	2	5.550