PSY9556b (April 2) Dichotomous (Binary), Categorical-Ordinal, and Count Outcomes

Continuous

- continuous ordinal
- interval
- ratio

Discrete

- dichotomous, binary
- nominal (can have more than two unordered categories)
- ordinal

In Mplus after "variable: names are..." include categorical are

- For dichotomous variables
 - 1 and 2 will be automatically recoded as 0 and 1
- For ordinal variables
 - no more than 10 categories
 - integer values only
 - categories automatically recoded as 0, 1, 2, ...

nominal are

- categories automatically recoded as 0, 1, 2, ...
- last category is reference

Dichotomous (Binary), Categorical-Ordinal, and Count Outcomes

Count Variables

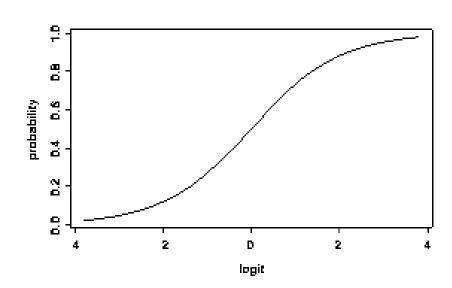
- e.g., number of accidents at a particular highway interchange in a 24 hour period (without knowing total number of cars that went through
- Poisson distribution
 - To model count data that varies randomly over time
 - Often used when probability is small
 - Discrete values (positive integers)

```
In Mplus after "variable: names are..." include

count = var or

count = var (p) for Poisson

count = var (i) or


count = var (pi) for zero-inflated poisson (ZIP)

count = var (nb) for negative binomial model (dispersion parameter is calculated; variance exceeds the mean)

See other models in Mplus manual
```

Binary Outcome

- 1 vs. 0, success vs. failure
- Expected mean = proportion of cases who have 1
 - $mean y = p_y$
 - π_y in population
 - $variance y = p_y(1 p_y)$

$$\pi_i = x_1 \beta$$

$$odds_i = \frac{\pi_i}{1 - \pi_i}$$

$$logit(\pi_i) = \log \frac{\pi_i}{1 - \pi_i}$$

Generalized Linear Models

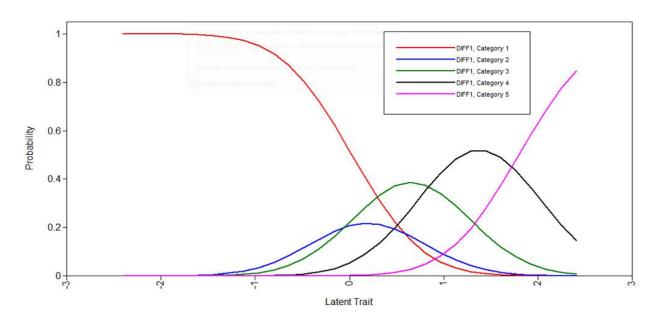
- General linear model is a special case of generalized linear models
- These models are available in SPSS
- Components include:
 - Random component referring to distribution of outcome variable
 - Systematic component refers to predictor variables (Xs)
 - Link function: the way in which the outcome is transformed so that a linear relationship can be assessed
- Generalized linear model for logistic regression
 - Random component: Outcome is binary, probability π_i
 - Systematic component:

$$\beta_0 + \beta_1 X_1 + B_2 X_2 + \dots + B_p X_p$$

Link function:

$$ln\left(\frac{\pi}{1-\pi}\right)$$
 = logit of π

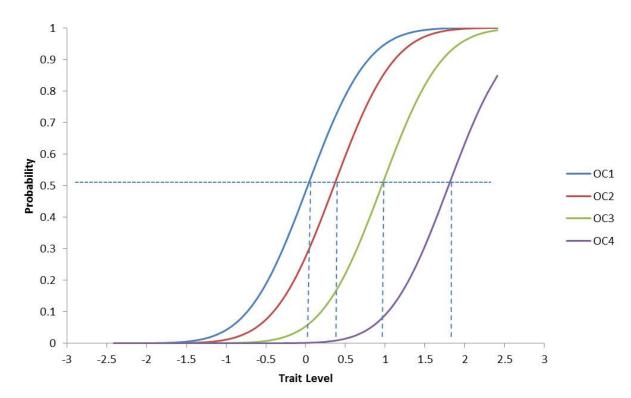
Full equation


$$y = logistic(\beta_0 + \beta_1 X_1 + B_2 X_2 + \dots + B_p X_p)$$

(y expressed in logits)

Model for Polytomous Items

$$P_{ik}^{*}(\theta) = \frac{e^{1.7a_{i}(\theta - b_{ik})}}{1 + e^{1.7a_{i}(\theta - b_{ik})}}$$


For an item i, $P_{ik}^*(\theta)$ is the probability of a response in or above a particular category k (except in the first category) given the value of θ and the parameters a_i (slope or discrimination) and b_{ik} (thresholds). The * refers to probability of a response or *higher*.

- Let us consider the example of subjects' responses to a 5-point Likert scale item. This is an example of a polytomous item (an item with more than two ordered categories).
- IRT (in this case the Graded-Response Model) uses item characteristics curves (ICCs) that depict the probability of each response as a function of a person's trait level.
- The parameter estimates in our example include one slope (discrimination parameter) and four thresholds.
- The number of thresholds equals the number of response categories minus one.
- An item characteristic curve (ICC) can be produced for each response category as shown below in Figure 1. In this case, each curve is a category response curve.

Figure 1. Category response curves for a five-point Likert scale item.

- A threshold is the value of the trait level θ on the "threshold" (.50 probability) of crossing over into the next highest response category. More specifically the four thresholds in our example distinguish:
- Categories 1 (very unlikely) vs. 2 (unlikely), 3 (neutral), 4 (likely), 5 (very likely)
- Categories 1 (very unlikely), 2 (unlikely) vs. 3 (neutral), 4 (likely), 5 (very likely)
- Categories 1 (very unlikely), 2 (unlikely), 3 (neutral) vs. 4 (likely), 5 (very likely)
- Categories 1 (very unlikely), 2 (unlikely), 3 (neutral), 4 (likely) vs. 5 very likely)
- Thus the first threshold which in our example has a value of 0.028 is the trait level at which there is a .50 probability of endorsing "unlikely" or higher. This is shown in Figure 2.

Figure 2. Operating characteristic curves for a five-point Likert scale item. Note that the threshold values (0.028, 0.357, 0.958, and 1.799) correspond to the intersection points between the vertical dotted lines and the X-axis referring to the latent trait value.

 Note that IRT methodologists have differed in the way they label item characteristic curves (or category characteristic curves for polytomous items) and operating characteristic curves. I have used the terminology by Embreston and Reise (2000); others have used opposite labels to define these two types of curves (e.g., DeMars, 2010).

DeMars, C. (2010). Item response theory. New York: Oxford University Press.

Embreston, S. E., & Reise, S. P. (2000). *Item response theory for psychologists*. Mahwah, NJ: Erlbaum.

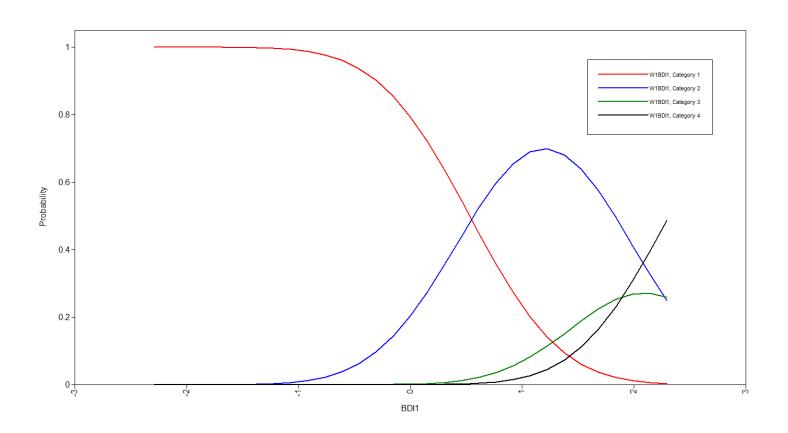
Thresholds in Mplus

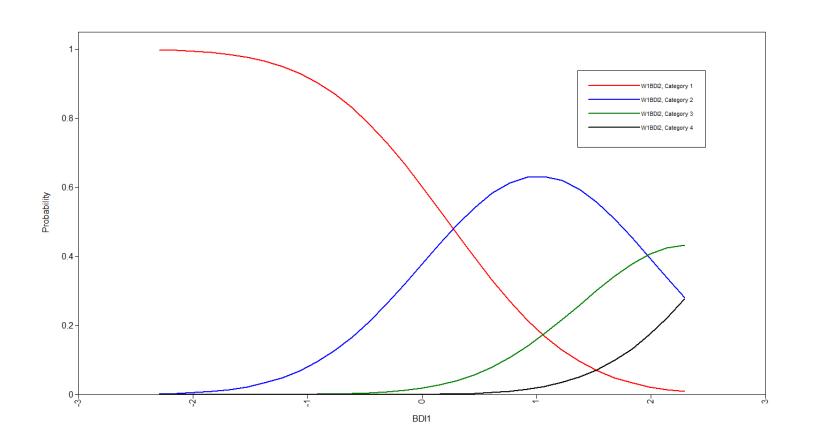
- Mplus reports thresholds (instead of means) for outcome variables specified as CATEGORICAL
- CATEGORICAL in Mplus specifies that the outcome variables are orderedcategorical or dichotomous
- This approach is ideal when your outcome variables are test or questionnaire items such as Likert-scale responses or any other types of responses with 10 or less ordered categories

Example of Longitudinal Invariance Analysis: BDI-II

W1BDI1					
Category 1	0.702	271.000			
Category 2	0.267	103.000			
Category 3	0.021	8.000			
Category 4	0.010	4.000			
W1BDI2					
Category 1	0.578	222.000			
Category 2	0.362	139.000			
Category 3	0.052	20.000			
Category 4	0.008	3.000			
W1BDI3					
Category 1	0.657	253.000			
Category 2	0.234	90.000			
Category 3	0.088	34.000			
Category 4	0.021	8.000			
W1BDI4			4.		
Category 1	0.699	270.000	4.		
Category 2	0.249	96.000		0	I get as much satisfaction out of things as I used
Category 3	0.044	17.000		1	I don't enjoy things the way I used to.
Category 4	0.008	3.000		2	I don't get real satisfaction out of anything anym
V1BDI5				3	I am dissatisfied or bored with everything.
Category 1	0.620	238.000	-	3	Tail dissatisfied of bored with everything.
Category 2	0.320	123.000	5.		
Category 3	0.047	18.000		0	I don't feel particularly guilty
Category 4	0.013	5.000		1	I feel guilty a good part of the time.
V1BDI6				2	I feel quite guilty most of the time.
Category 1	0.858	332.000		3	I feel guilty all of the time.
	0.114	44.000		3	ricer guilty air of the time.
	0.021	8.000	6.		
Category 4	0.008	3.000		0	I don't feel I am being punished.
N1BDI7				1	I feel I may be punished.
Category 1	0.627	242.000		2	I expect to be punished.
Category 2	0.251	97.000		3	I feel I am being punished.
Category 3	0.073	28.000	_	3	ricer rain being punished.
Category 4	0.049	19.000			
W1BDI8					
Category 1	0.584	226.000			
Category 2	0.318	123.000			
Category 3	0.070	27.000			

0.028 11.000


ML WLSMV


MODEL FIT INFORMATION			MODEL FIT INFORMATION	
Number of Free Parameters	63		Number of Free Parameters	84
Loglikelihood			Chi-Square Test of Model Fit	
HO Value	-6704.908		Value	530.654*
H1 Value	-6382.964		Degrees of Freedom P-Value	189 0.0000
Information Criteria				
			 * The chi-square value for MLM, MLM 	MV, MLR, ULSMV, WLSM an
Akaike (AIC)	13535.817		for chi-square difference testing	
Bayesian (BIC)	13785.198		chi-square difference testing is	-
Sample-Size Adjusted BIC	13585.305		and ULSMV difference testing is (done using the DIFFTEST
(n* = (n + 2) / 24)				
			RMSEA (Root Mean Square Error Of App:	roximation)
Chi-Square Test of Model Fit				
			Estimate	0.068
Value	643.889		90 Percent C.I.	0.062 0.075
Degrees of Freedom	189		Probability RMSEA <= .05	0.000
P-Value	0.0000		CDT /mt T	
			CFI/TLI	
RMSEA (Root Mean Square Error Of App	proximation)		CFI	0.934
			TLI	0.934
Estimate	0.079		111	0.920
90 Percent C.I.		0.086	Chi-Square Test of Model Fit for the	Ragalina Model
Probability RMSEA <= .05	0.000		chi-Square lest of Model Fit for the	baseline Model
			Value	5359.205
CFI/TLI			Degrees of Freedom	210
			P-Value	0.0000
CFI	0.841			
TLI	0.823		WRMR (Weighted Root Mean Square Resid	dual)
			Value	1.269
			10000000	

ML WLSMV

STDYX Standardization

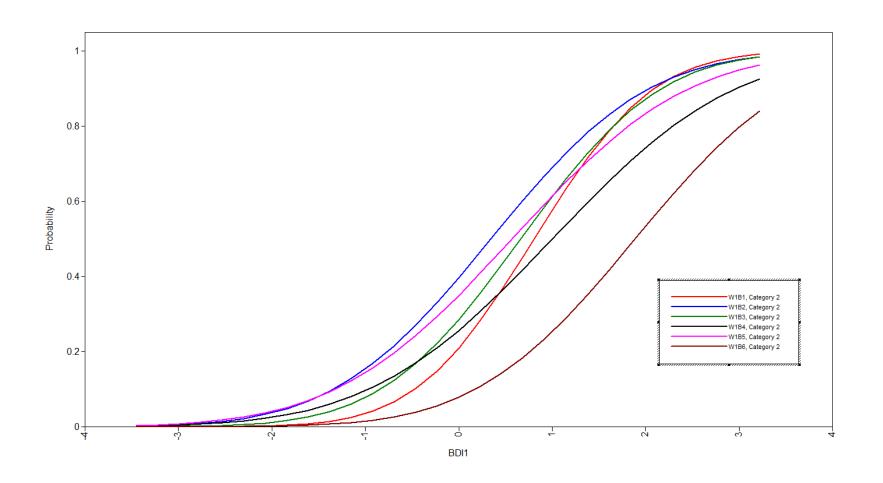
		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
BDI1	BY					BDI1 BY				
W1BD	I1	0.653	0.032	20.565	0.000	W1BDI1	0.764	0.033	23.018	0.000
W1BD	12	0.573	0.037	15.687	0.000	W1BDI2	0.657	0.037	17.866	0.000
W1BD	13	0.697	0.029	24.257	0.000	W1BDI3	0.765	0.030	25.400	0.000
W1BD	14	0.576	0.036	15.833	0.000	W1BDI4	0.658	0.037	17.745	0.000
W1BD	15	0.598	0.035	17.083	0.000	W1BDI5	0.662	0.040	16.413	0.000
W1BD	16	0.479	0.042	11.531	0.000	W1BDI6	0.643	0.055	11.693	0.000
W1BD	17	0.732	0.026	27.919	0.000	W1BDI7	0.796	0.028	28.314	0.000
W1BD	810	0.616	0.034	18.175	0.000	W1BDI8	0.667	0.037	18.170	0.000
W1BD	19	0.453	0.043	10.613	0.000	W1BDI9	0.647	0.057	11.381	0.000
W1BD	110	0.434	0.044	9.936	0.000	W1BDI10	0.558	0.052	10.813	0.000
W1BD	111	0.406	0.045	9.037	0.000	W1BDI11	0.499	0.048	10.440	0.000
W1BD	112	0.533	0.039	13.765	0.000	W1BDI12	0.644	0.042	15.479	0.000
W1BD	113	0.597	0.035	17.000	0.000	W1BDI13	0.689	0.040	17.280	0.000
W1BD	114	0.754	0.025	30.636	0.000	W1BDI14	0.922	0.027	33.553	0.000
W1BD	115	0.666	0.031	21.497	0.000	W1BDI15	0.766	0.026	29.624	0.000
W1BD	16R	0.414	0.044	9.298	0.000	W1BD16R	0.499	0.046	10.949	0.000
W1BD	117	0.602	0.035	17.321	0.000	W1BDI17	0.710	0.042	16.919	0.000
W1BD	18R	0.520	0.039	13.187	0.000	W1BD18R	0.587	0.043	13.718	0.000
W1BD	119	0.608	0.034	17.663	0.000	W1BDI19	0.687	0.035	19.366	0.000
W1BD	120	0.558	0.038	14.818	0.000	W1BDI20	0.660	0.034	19.670	0.000
W1BD	121	0.458	0.043	10.747	0.000	W1BDI21	0.598	0.053	11.384	0.000

BDI-II: A Third Approach - Categorical (WLSMV) Items Dichotomized*

MODEL FIT INFORMATION		STDYX Standardiz	ation			
Number of Free Parameters	42					Two-Tailed
			Estimate	S.E.	Est./S.E.	P-Value
Chi-Square Test of Model Fit						
		BDI1 BY				
Value	410.622*	W1B1	0.754	0.040	18.934	0.000
Degrees of Freedom	189	W1B2	0.658	0.045	14.731	0.000
P-Value	0.0000	W1B3	0.700	0.044	15.781	0.000
		W1B4	0.600	0.051	11.726	0.000
 The chi-square value for MLM, MLM 		W1B5	0.614	0.049	12.457	0.000
for chi-square difference testing		W1B6	0.652	0.060	10.924	0.000
chi-square difference testing is o	_	W1B7	0.781	0.036	21.665	0.000
and ULSMV difference testing is do	one using the DIFFTES	W1B8	0.614	0.047	13.206	0.000
		W1B9	0.662	0.067	9.852	0.000
RMSEA (Root Mean Square Error Of Appro	oximation)	W1B10	0.598	0.055	10.776	0.000
		W1B11	0.531	0.056	9.464	0.000
Estimate	0.055	W1B12	0.638	0.048	13.196	0.000
90 Percent C.I.	0.048 0.062	W1B13	0.639	0.052	12.371	0.000
Probability RMSEA <= .05	0.124	W1B14	0.897	0.039	22.763	0.000
		W1B15	0.656	0.044	15.044	0.000
CFI/TLI		W1B16	0.448	0.067	6.678	0.000
		W1B17	0.727	0.044	16.708	0.000
CFI	0.930	W1B18	0.546	0.053	10.222	0.000
TLI	0.922	W1B19	0.657	0.044	15.055	0.000
		W1B20	0.543	0.052	10.414	0.000
Chi-Square Test of Model Fit for the B	Baseline Model	W1B21	0.552	0.069	8.043	0.000
Value	3375.787					
Degrees of Freedom	210					
P-Value	0.0000					
		*In some o	f the later v	vaves d	of data	
WRMR (Weighted Root Mean Square Residu	ual)	501116 0			o. Gata,	_

1.222

Value


^{*}In some of the later waves of data, respondents didn't use all responses...further explanation in class

BDI-II: A Third Approach - Categorical (WLSMV) Items Dichotomized*

IRT PARAMETERIZATION IN TWO-PARAMETER PROBIT METRIC WHERE THE PROBIT IS DISCRIMINATION*(THETA - DIFFICULTY)

			(-,					
Item Di	scrimination	s								
BDI1	ВУ					Item Difficulties				
W1B1		1.149	0.141	8.157	0.000	W1B1\$1	0.703	0.098	7.192	0.000
W1B2	!	0.873	0.104	8.360	0.000	W1B2\$1	0.300	0.100	2.992	0.003
W1B3	}	0.980	0.122	8.049	0.000	W1B3\$1	0.578	0.102	5.643	0.000
W1B4	1	0.750	0.100	7.503	0.000	W1B4\$1	0.871	0.138	6.307	0.000
W1B5	,	0.778	0.100	7.762	0.000	W1B5\$1	0.497	0.113	4.384	0.000
W1B6	;	0.860	0.137	6.277	0.000	W1B6\$1	1.642	0.205	8.014	0.000
W1B7	•	1.251	0.148	8.449	0.000	W1B7\$1	0.415	0.086	4.832	0.000
W1B8	}	0.778	0.095	8.224	0.000	W1B8\$1	0.345	0.108	3.201	0.001
W1B9)	0.884	0.160	5.528	0.000	W1B9\$1	1.973	0.256	7.710	0.000
W1B1	.0	0.746	0.108	6.924	0.000	W1B10\$1	1.170	0.165	7.070	0.000
W1B1	.1	0.627	0.092	6.795	0.000	W1B11\$1	0.123	0.122	1.012	0.311
W1B1	.2	0.829	0.106	7.821	0.000	W1B12\$1	0.731	0.119	6.118	0.000
W1B1	.3	0.832	0.114	7.313	0.000	W1B13\$1	0.982	0.137	7.151	0.000
W1B1	.4	2.032	0.458	4.439	0.000	W1B14\$1	1.179	0.105	11.238	0.000
W1B1	.5	0.870	0.102	8.560	0.000	W1B15\$1	0.035	0.097	0.356	0.722
W1B1	.6	0.501	0.094	5.339	0.000	W1B16\$1	-1.589	0.293	-5.422	0.000
W1B1	.7	1.058	0.134	7.881	0.000	W1B17\$1	0.785	0.107	7.329	0.000
W1B1	.8	0.652	0.091	7.173	0.000	W1B18\$1	-0.119	0.118	-1.011	0.312
W1B1	.9	0.871	0.102	8.557	0.000	W1B19\$1	-0.020	0.097	-0.204	0.839
W1B2	0	0.646	0.088	7.345	0.000	W1B20\$1	-0.279	0.122	-2.280	0.023
W1B2	1	0.662	0.118	5.593	0.000	W1B21\$1	1.850	0.281	6.588	0.000

BDI-II: A Third Approach - Categorical (WLSMV) Items Dichotomized*

BDI-II: Tests of Measurement Invariance – wk1 wk13 wk26 (see Mplus Manual 7 p. 486)

Model 1 (Configural MI)

```
ANALYSIS:

parameterization = theta;

MODEL:

bdi1 by w1b1-w1b21;

bdi13 by w13b1-w13b21;

bdi26 by w26b1-w26b21;

!correlated residuals acrorss time
w1b1 with w13b1 w26b1;
w1b2 with w13b2 w26b2;
w1b3 with w13b3 w26b3;
w1b4 with w13b4 w26b4:
```

Not all correlated residuals shown

```
w13b19 with w26b19;
w13b20 with w26b20;
w13b21 with w26b21;
!set residual variances to 1;
w1b1-w1b21@1;
w13b1-w13b21@1;
w26b1-w26b21@1;
!set factor means at 0;
[bdi1@0 bdi13@0 bdi26@0];
OUTPUT: sampstat stdyx modindices;
SAVEDATA: difftest=deriv.dat;
```

Model 2 (Loadings & Thresholds MI)

```
ANALYSIS:
parameterization = theta;
difftest = deriv.dat;
MODEL:
bdil by
w1b1-w1b21 (L1-L21);
bdi13 by
w13b1-w13b21 (L1-L21);
bdi26 bv
w26b1-w26b21 (L1-L21);
[w1b1$1-w1b21$1] (T1-T21);
[w13b1$1-w13b21$1] (T1-T21);
[w26b1$1-w26b21$1] (T1-T21);
w1b1 with w13b1 w26b1;
w1b2 with w13b2 w26b2:
w1b3 with w13b3 w26b3:
w1b4 with w13b4 w26b4;
```

Not all correlated residuals shown

```
w13b19 with w26b19;
w13b20 with w26b20;
w13b21 with w26b21;
!set residual variances to 1;
w1b1-w1b21@1;
w13b1-w13b21;
w26b1-w26b21;
!set factor means at 0;
[bdi1@0];
[bdi13 bdi26];
OUTPUT: sampstat stdyx modindices;
!SAVEDATA: difftest=deriv.dat;
```

BDI-II: Tests of Measurement Invariance – wk1 wk13 wk26 (see Mplus Manual 7 p. 486)

Model 1 (Configural MI)

MODEL E	FIT INFORMATION	
Number	of Free Parameters	192
Chi-Squ	are Test of Model Fit	
	Value	2174.229*
	Degrees of Freedom	1824
	P-Value	0.0000
for chi	e chi-square value for MLM, r chi-square difference tes i-square difference testing i ULSMV difference testing	ting in the regular way. is described on the Mplu
RMSEA ((Root Mean Square Error Of	Approximation)
	Estimate	0.022
	90 Percent C.I.	0.018 0.025
	Probability RMSEA <= .0	5 1.000
CFI/TLI	ī	
	CFI	0.956
	TLI	0.953
Chi-Squ	are Test of Model Fit for	the Baseline Model
	Value	10003.731
	Degrees of Freedom	1953
	P-Value	0.0000
WRMR (W	Weighted Root Mean Square R	esidual)
	Value	1.105

Model 2 (Loadings & Thresholds MI)

Number of Free Parameters	154
Chi-Square Test of Model Fit	
Value	2234.787*
Degrees of Freedom	1862
P-Value	0.0000
Chi-Square Test for Difference Testing	
Value	96.938
Degrees of Freedom	38
P-Value	0.0000
* The chi-square value for MLM, MLMV, for chi-square difference testing is chi-square difference testing is de and ULSMV difference testing is don	n the regular way. scribed on the Mpl
RMSEA (Root Mean Square Error Of Approx	imation)
Estimate	0.022
90 Percent C.I.	0.018 0.026
Probability RMSEA <= .05	1.000
CFI/TLI	
CFI	0.954
TLI	0.951
Chi-Square Test of Model Fit for the Ba	seline Model
Value	10003.731
Degrees of Freedom	1953
P-Value	0.0000
WRMR (Weighted Root Mean Square Residua	1)
Value	1.135