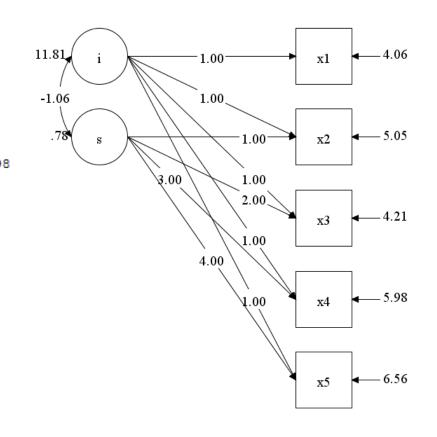

## PSY 9556B (Jan8) Design Issues and Missing Data Continued Examples of Simulations for Projects

- Let's create a data for a variable measured repeatedly over five occasions
- We could create raw data (for each subject) or summary data for the sample
- Here's an example of summary data



- Notice that I have simulated a growth pattern
- with increasing variation over time
- and fairly substantial stability in rank ordering (correlations) across time
- But with higher correlations for time points in closer proximity


## Simulated Data Example: Syntax (Mplus) of a Latent Growth Model

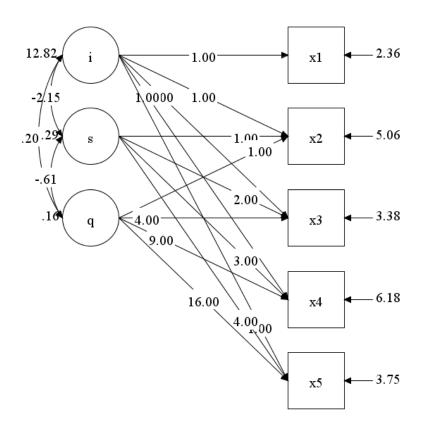
I can analyze a LGM model with summary data

```
Title: Example of a latent-growth-modeling study with summary data;
data:
file is example corr.txt;
nobservations = 200;
type=correlation means stdeviations;
variable:
names are x1 x2 x3 x4 x5;
usevariables are x1 x2 x3 x4 x5;
analysis:
estimator = ml; !note summary data such as correlation matrix cannot use mlr
model:
I S | x100 x201 x302 x403 x504;
plot:
type is plot3; !note this function does not work with summary data
series = x1(0) x2(1) x3(2) x4(3) x5(4);
output: sampstat residual stdyx tech4 modindices;
to make your own plot of the linear trend use the mean intercept as the
starting point (on the y axis) and add the amount of the mean slope at
!each time unit.
```

## **Simulated Data Example: LGM Model and Results**

| Chi-Squar                               | e Test of Model Fit         |                |       |
|-----------------------------------------|-----------------------------|----------------|-------|
| *************************************** | Value                       | 14.650         |       |
|                                         | Degrees of Freedom          | 10             |       |
| 000000000000000000000000000000000000000 | P-Value                     | 0.1454         |       |
| RMSEA (Ro                               | ot Mean Square Error Of App | roximation)    |       |
| 000000000000000000000000000000000000000 | Estimate                    | 0.048          |       |
|                                         | 90 Percent C.I.             | 0.000          | 0.098 |
|                                         | Probability RMSEA <= .05    | 0.469          |       |
| CFI/TLI                                 |                             |                |       |
|                                         | CFI                         | 0.992          |       |
|                                         | TLI                         | 0.992          |       |
| Chi-Squar                               | e Test of Model Fit for the | Baseline Model |       |
|                                         | Value                       | 568.088        |       |
|                                         | Degrees of Freedom          | 10             |       |
|                                         | P-Value                     | 0.0000         |       |
| SRMR (Sta                               | ndardized Root Mean Square  | Residual)      |       |
| 000000000000000000000000000000000000000 | Value                       | 0.047          |       |
| 3                                       |                             |                |       |




## **Simulated Data Example: Results**

| S        | WITH       |        |       |         |         |         |             |    |           |            |                |
|----------|------------|--------|-------|---------|---------|---------|-------------|----|-----------|------------|----------------|
| I        |            | -1.057 | 0.362 | -2.923  | 0.003   |         |             |    |           |            |                |
| Means    |            |        |       |         |         |         |             |    |           |            |                |
| I        |            | 4.994  | 0.269 | 18.569  | 0.000   | 7       |             |    |           |            |                |
| S        |            | 0.325  | 0.081 | 4.021   | 0.000   | 7       |             |    |           |            |                |
| Interce  | pts        |        |       |         |         |         |             |    |           |            |                |
| X1       |            | 0.000  | 0.000 | 999.000 | 999.000 |         |             |    | -         |            |                |
| X2       |            | 0.000  | 0.000 | 999.000 | 999.000 | 6       |             |    |           |            |                |
| Х3       |            | 0.000  | 0.000 | 999.000 | 999.000 | _       |             |    |           |            |                |
| X4       |            | 0.000  | 0.000 | 999.000 | 999.000 |         |             |    |           |            | <b>→</b> -Data |
| X5       |            | 0.000  | 0.000 | 999.000 | 999.000 |         |             |    |           |            |                |
|          |            |        |       |         |         | 5       |             |    |           |            | —Model         |
| Variance | es         |        |       |         |         | <i></i> | · ·         |    |           |            | IVIOUCI        |
| I        |            | 11.810 | 1.488 | 7.937   | 0.000   |         |             |    |           |            |                |
| S        |            | 0.784  | 0.143 | 5.504   | 0.000   |         |             |    |           |            |                |
|          |            |        |       |         |         | 4       |             |    |           |            |                |
|          | l Variance |        |       |         |         | 7       | 1 1         | ı  | I         | 1 1        |                |
| X1       |            | 4.056  | 0.823 | 4.926   | 0.000   |         | x1 x2       | х3 | х4        | <b>v</b> 5 |                |
| X2       |            | 5.046  | 0.657 | 7.685   | 0.000   |         | <b>VT V</b> | ۸۵ | <b>74</b> | ۸٦         |                |
| Х3       |            | 4.213  | 0.547 | 7.704   | 0.000   |         |             |    |           |            |                |
| X4       |            | 5.979  | 0.795 | 7.518   | 0.000   |         |             |    |           |            |                |
| X5       |            | 6.558  | 1.119 | 5.861   | 0.000   |         |             |    |           |            |                |

## **Simulated Data Example: Adding a Quadratic Component**

#### model: I S Q| x100 x201 x302 x403 x504;

| Chi-Square Test of Model Fit        |                  |       |
|-------------------------------------|------------------|-------|
| Value                               | 6.228            |       |
| Degrees of Freedom                  | 6                |       |
| P-Value                             | 0.3982           |       |
| RMSEA (Root Mean Square Error Of Ap | proximation)     |       |
| Estimate                            | 0.014            |       |
| 90 Percent C.I.                     | 0.000            | 0.094 |
| Probability RMSEA <= .05            | 0.674            |       |
| CFI/TLI                             |                  |       |
| CFI                                 | 1.000            |       |
| TLI                                 | 0.999            |       |
| Chi-Square Test of Model Fit for th | e Baseline Model |       |
| Value                               | 568.088          |       |
| Degrees of Freedom                  | 10               |       |
| P-Value                             | 0.0000           |       |
| SRMR (Standardized Root Mean Square | Residual)        |       |
| Value                               | 0.030            |       |



## **Simulated Data Example: Adding a Quadratic Component**

| s      | I     | WITH         | -2.152 | 1.345   | -1.600  | 0.110   |     |           |       |        |         |                 |               |
|--------|-------|--------------|--------|---------|---------|---------|-----|-----------|-------|--------|---------|-----------------|---------------|
| Q      |       | WITH         |        |         |         |         |     |           |       |        |         |                 |               |
| *      | I     |              | 0.196  | 0.268   | 0.731   | 0.465   |     |           |       |        |         |                 |               |
|        | S     |              | -0.614 | 0.262   | -2.349  | 0.019   |     |           |       |        |         |                 |               |
|        | _     |              |        | 3.232   | 2.015   | 0.025   |     |           | 0     |        |         | .: : <b>c</b> : |               |
| Me     | ans   |              |        |         |         |         |     |           | Quad  | aratic | nots    | signific        | cant          |
|        | I     |              | 4.959  | 0.274   | 18.085  | 0.000   |     |           |       |        |         | _               |               |
|        | S     |              | 0.446  | 0.190   | 2.347   | 0.019   |     |           |       |        |         |                 |               |
|        | Q     |              | -0.036 | 0.045   | -0.801  | 0.423   |     |           |       |        |         |                 |               |
|        | *     |              |        |         |         |         |     |           | Cla:a |        | - 1:tt  | <b>4 4</b> / /  | י יוני        |
| In     | terce | ents         |        |         |         |         |     |           | Chis  | quare  | e airr  | test (4         | 1 df) =       |
|        | Х1    |              | 0.000  | 0.000   | 999.000 | 999.000 |     |           | 110   |        | c 220   | 0 4             | 22            |
|        | X2    |              | 0.000  | 0.000   | 999.000 | 999.000 |     |           | 14.6  | 50 -   | 6.228   | s = 8.4         | 22 n.s.       |
|        | хз    |              | 0.000  | 0.000   | 999.000 | 999.000 |     |           | /     | - 1    |         | \               | 400\          |
|        | X4    |              | 0.000  | 0.000   | 999.000 | 999.000 |     |           | (Crit | value  | e at .u | )5 = 9.         | 488)          |
|        | X5    |              | 0.000  | 0.000   | 999.000 | 999.000 |     |           | •     |        |         |                 | •             |
|        |       |              |        |         |         |         | 7   |           |       |        |         |                 |               |
| Va     | riand | es           |        |         |         |         | 7   |           |       |        |         |                 |               |
|        | I     |              | 12.815 | 1.961   | 6.536   | 0.000   |     |           |       |        |         |                 |               |
|        | S     |              | 3.294  | 1.243   | 2.651   | 0.008   |     |           |       |        |         |                 |               |
|        | Q     |              | 0.162  | 0.064   | 2.539   | 0.011   |     |           |       |        |         |                 |               |
|        |       |              |        |         |         |         | C   |           |       |        |         |                 |               |
| Re     | sidua | al Variances | 3      |         |         |         | 6   |           |       |        |         |                 |               |
|        | X1    |              | 2.362  | 1.420   | 1.663   | 0.096   |     |           |       |        |         |                 |               |
|        | X2    |              | 5.062  | 0.696   | 7.278   | 0.000   |     |           |       |        |         |                 | <b>→</b> Data |
|        | X3    |              | 3.380  | 0.594   | 5.693   | 0.000   |     |           |       |        |         |                 |               |
|        | X4    |              | 6.180  | 0.826   | 7.484   | 0.000   | _   |           |       |        |         |                 | — Ouad        |
|        | X5    |              | 3.754  | 1.759   | 2.134   | 0.033   | 5 - |           |       |        |         |                 | —Quad         |
|        |       |              |        |         |         |         |     |           |       |        |         |                 |               |
|        |       |              |        |         |         |         | 4   |           |       |        |         |                 |               |
|        |       |              |        |         |         |         | 4   | +         |       |        | Т       |                 | l             |
| *Teste | d a   | cubic co     | mponen | t; n.s. |         |         |     | <b>x1</b> | x2    | х3     | x4      | x5              |               |

## **Simulated Data Example: SPSS MANOVA (matrix data)**

```
matrix data variables = rowtype_ d1 d2 d3 d4 d5.
begin data
mean 5.0 5.2 5.7 6.2 6.1
stddev 3.9 4.1 3.8 4.5 4.6
n 200 200 200 200 200
corr 1
corr .7 1
corr .6 .7 1
corr .5 .6 .7 1
corr .4 .5 .6 .7 1
end data.
manova d1 to d5
/transform (d1 d2 d3 d4 d5) = polynomial
/print= cellinfo (all) error transform param(all) signif (efsize) signif (multiv univ)
/ matrix=in(*)
/ design.
```

Note that to get equivalent results in LGM residuals are set to 0 and you Would need some codes for polynomials instead of the 0, 1, 2, 3, 4

## Simulated Data Example: Using Montecarlo in Mplus

- In my previous example, the simulated data was a sample
- It would be possible to create a population instead with the same parameters
- Once we have a population, we can obtain random samples and study properties such as sample size and power.
- Let's try an example using the Montecarlo procedure in Mplus
- Using the previous LGM analysis syntax, I add a line at the end "savedata:" to save the parameters describing the model for further analysis with Montecarlo.

```
Title: Example of a latent-growth-modeling study with summary data;
data:
file is example corr.txt;
nobservations = 200;
type=correlation means stdeviations;
variable:
names are x1 x2 x3 x4 x5;
usevariables are x1 x2 x3 x4 x5;
analvsis:
estimator = ml; !note summary data such as correlation matrix cannot use mlr
model:
I S Q| x100 x201 x302 x403 x504;
plot:
series = x1(0) x2(1) x3(2) x4(3) x5(4);
output: sampstat residual stdyx tech4 modindices;
savedata: estimates = lgmestimates.dat;
```

## **Simulated Data Example: Using Montecarlo in Mplus**

### names are x1 x2 x3 x4 x5; nobservations = 200; nreps = 1000; seed = 45335;

save = rep1.dat;
population = lgmestimates.dat;
coverage = lgmestimates.dat;

model population:

montecarlo:

I S Q| x100 x201 x302 x403 x504; model:

I S Q| x1@0 x2@1 x3@2 x4@3 x5@4; output: tech9;

#### MODEL RESULTS

|            | Po         | pulation | ESTIMATES<br>Average | Std. Dev. | S. E.<br>Average | M. S. E. |       | % Sig<br>Coeff |
|------------|------------|----------|----------------------|-----------|------------------|----------|-------|----------------|
| s          | WITH       |          |                      |           |                  |          |       |                |
| I          |            | -2.152   | -2.1136              | 1.2862    | 1.3420           | 1.6541   | 0.952 | 0.325          |
| Q          | WITH       |          |                      |           |                  |          |       |                |
| I          |            | 0.196    | 0.1882               | 0.2584    | 0.2670           | 0.0668   | 0.951 | 0.082          |
| S          |            | -0.614   | -0.6059              | 0.2686    | 0.2614           | 0.0722   | 0.945 | 0.659          |
| Means      |            |          |                      |           |                  |          |       |                |
| I          |            | 4.959    | 4.9385               | 0.2677    | 0.2732           | 0.0720   | 0.956 | 1.000          |
| S          |            | 0.446    | 0.4485               | 0.2013    | 0.1894           | 0.0405   | 0.933 | 0.643          |
| Q          |            | -0.036   | -0.0367              | 0.0481    | 0.0449           | 0.0023   | 0.933 | 0.161          |
| Inter      | cepts      |          |                      |           |                  |          |       |                |
| X1         |            | 0.000    | 0.0000               | 0.0000    | 0.0000           | 0.0000   | 1.000 | 0.000          |
| X2         |            | 0.000    | 0.0000               | 0.0000    | 0.0000           | 0.0000   | 1.000 | 0.000          |
| Х3         |            | 0.000    | 0.0000               | 0.0000    | 0.0000           | 0.0000   | 1.000 | 0.000          |
| X4         |            | 0.000    | 0.0000               | 0.0000    | 0.0000           | 0.0000   | 1.000 | 0.000          |
| X5         |            | 0.000    | 0.0000               | 0.0000    | 0.0000           | 0.0000   | 1.000 | 0.000          |
| Varian     | nces       |          |                      |           |                  |          |       |                |
| I          |            | 12.815   | 12.7244              | 1.9484    | 1.9555           | 3.8007   | 0.947 | 1.000          |
| S          |            | 3.294    | 3.2574               | 1.2526    | 1.2424           | 1.5688   | 0.940 | 0.758          |
| Q          |            | 0.162    | 0.1595               | 0.0662    | 0.0638           | 0.0044   | 0.941 | 0.715          |
| Residu     | ual Varian | ces      |                      |           |                  |          |       |                |
| X1         |            | 2.362    | 2.3705               | 1.3434    | 1.4213           | 1.8029   | 0.964 | 0.380          |
| X2         |            | 5.062    | 5.0790               | 0.6574    | 0.6967           | 0.4320   | 0.965 | 1.000          |
| Х3         |            | 3.380    | 3.3683               | 0.6097    | 0.5931           | 0.3715   | 0.941 | 1.000          |
| X4         |            | 6.180    | 6.1958               | 0.8643    | 0.8268           | 0.7465   | 0.935 | 1.000          |
| <b>X</b> 5 |            | 3.754    | 3.7529               | 1.8003    | 1.7551           | 3.2379   | 0.945 | 0.574          |

## Simulated Data Example: Using Montecarlo in Mplus

```
TITLE: growth1.inp normal, no covariate, no missing
MONTECARLO:
NAMES ARE x1-x5;
NOBSERVATIONS = 200;
NREPS = 1000:
SEED = 53487;
SAVE = growth1.sav;
ANALYSIS:
MODEL POPULATION:
i s q | x1@0 x2@1 x3@2 x4@3 x5@4;
[x1-x5@0];
[i*4.959 s*0.446 g*-0.036];
i*12.815;
s*3.294;
a*0.162;
i WITH s*-2.152;
i WITH a*0.196;
s WITH a*-.614;
x1*2.362:
x2*5.062:
x3*3.380:
x4*6.180:
x5*3.754;
MODEL:
i s g | x100 x201 x302 x403 x504;
[x1-x5@0];
[i*4.959 s*0.446 g*-0.036];
i*12.815;
s*3.294;
a*0.162:
i WITH s*-2.152;
i WITH q*0.196;
s WITH q*-.614;
x1*2.362;
x2*5.062;
x3*3.380;
x4*6.180;
x5*3.754:
OUTPUT: TECH9;
```

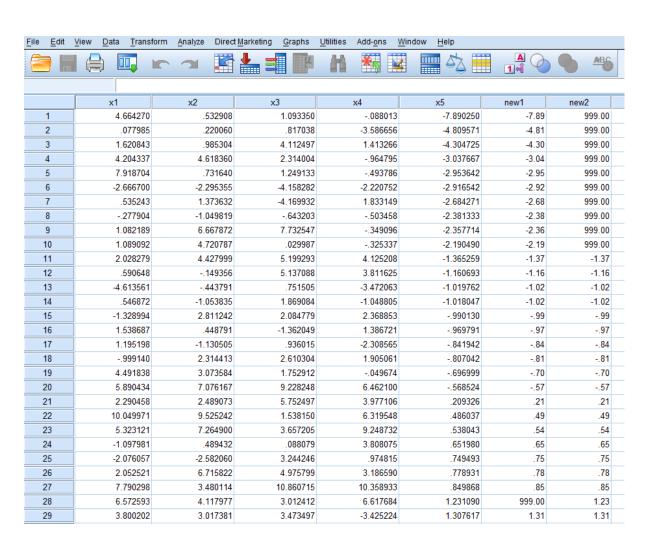
Alternatively, you could specify the parameters yourself. In this example, you would specify the mean intercept and slope, the variance of the intercepts and slopes, the correlation between the slopes and intercepts, and the residuals.

STRUCTURAL EQUATION MODELING, 9(4), 599-620 Copyright © 2002, Lawrence Erlbaum Associates, Inc.

#### TEACHER'S CORNER

How to Use a Monte Carlo Study to Decide on Sample Size and Determine Power

> Linda K. Muthén Muthén & Muthén Los Angeles, California


Bengt O. Muthén Graduate School of Education & Information Studies University of California, Los Angeles

## **Understanding the Three Mechanisms of Missing Data**

| RISK   | Reading Score | MCAR | MAR | NMAR |
|--------|---------------|------|-----|------|
| Disadv | 174           | 174  | 174 |      |
| Disadv | 179           |      |     |      |
| Disadv | 194           | 194  | 194 |      |
| Disadv | 194           | 194  | 194 |      |
| Disadv | 203           | 203  |     |      |
| Disadv | 206           |      |     | 206  |
| Disadv | 209           | 209  |     | 209  |
| Disadv | 213           | 213  | 213 | 213  |
| Disadv | 233           | 233  | 233 | 233  |
| Disadv | 248           |      |     | 248  |
| Adv    | 208           | 208  | 208 | 208  |
| Adv    | 217           | 217  | 217 | 217  |
| Adv    | 219           | 219  | 219 | 219  |
| Adv    | 221           | 221  | 221 | 221  |
| Adv    | 225           |      | 225 | 225  |
| Adv    | 228           |      | 228 | 228  |
| Adv    | 234           | 234  | 234 | 234  |
| Adv    | 236           | 236  | 236 | 236  |
| Adv    | 236           | 236  | 236 | 236  |
| Adv    | 243           | 243  | 243 | 243  |

From Long, J. D. (2012). *Longitudinal data analysis for the behavioral sciences using R*. Thousand Oaks Sage, California: Sage. (p. 91)

## **Simulation Example of Missing Data**



Data derived from previous LGM model with 200 cases

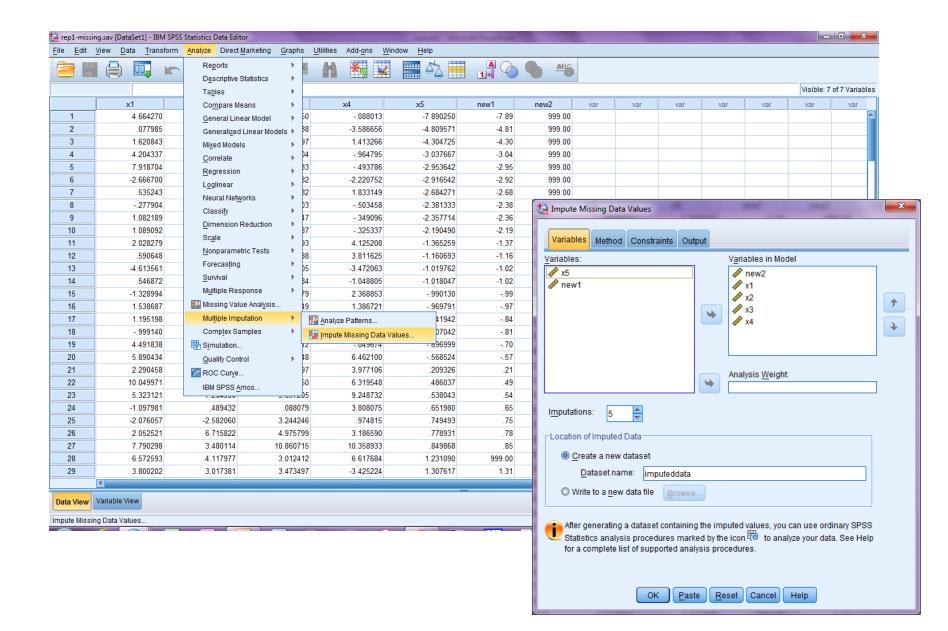
**New1** is a duplicate of X5 with 10 cases MCAR

**New2** is a duplicate of X5 with 10 cases MNAR

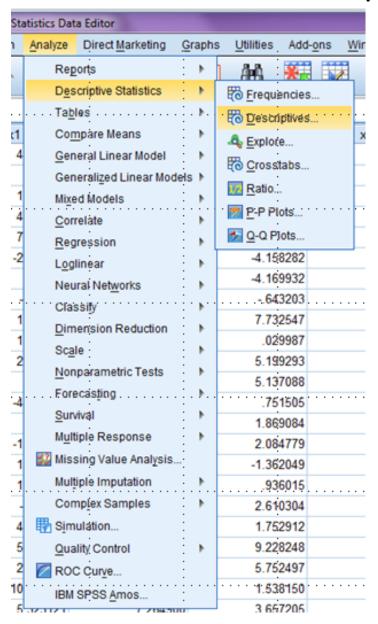
## **Simulation Example of Missing Data**

Lets see what happens to the descriptive statistics when we use a listwise deletion.

#### Descriptive Statistics


|                    | Ν   | Minimum   | Maximum   | Mean       | Std. Deviation |
|--------------------|-----|-----------|-----------|------------|----------------|
| x5                 | 200 | -7.890250 | 18.340545 | 5.92731016 | 4.438446019    |
| new1               | 190 | -7.89     | 18.34     | 5.9426     | 4.47728        |
| new2               | 190 | -1.37     | 18.34     | 6.4263     | 3.94866        |
| Valid N (listwise) | 180 |           |           |            |                |

- The true mean value is 5.927 (variable x5)
- New1 has a similar mean of 5.943 because it was MCAR
- New2 has a biased mean of 6.426 because it was MNAR
- See also standard deviation and correlation differences


#### Correlations

|    |                     | x5   | new1 | new2 |
|----|---------------------|------|------|------|
| x1 | Pearson Correlation | .492 | .505 | .476 |
|    | Sig. (2-tailed)     | .000 | .000 | .000 |
|    | N                   | 200  | 190  | 190  |
| x2 | Pearson Correlation | .556 | .555 | .525 |
|    | Sig. (2-tailed)     | .000 | .000 | .000 |
|    | N                   | 200  | 190  | 190  |
| х3 | Pearson Correlation | .687 | .691 | .666 |
|    | Sig. (2-tailed)     | .000 | .000 | .000 |
|    | Ν                   | 200  | 190  | 190  |
| x4 | Pearson Correlation | .708 | .713 | .663 |
|    | Sig. (2-tailed)     | .000 | .000 | .000 |
|    | N                   | 200  | 190  | 190  |

## Multiple Imputation of new2



## Multiple Imputation of new2



#### Descriptive Statistics

| Imputation Im | putation Number    | N   | Minimum | Maximum | Mean   | Std. Deviation |
|---------------|--------------------|-----|---------|---------|--------|----------------|
| Original data | new2               | 190 | -1.37   | 18.34   | 6.4263 | 3.94866        |
|               | Valid N (listwise) | 190 |         |         |        |                |
| 1             | new2               | 200 | -1.37   | 18.34   | 6.2683 | 3.95366        |
|               | Valid N (listwise) | 200 |         |         |        |                |
| 2             | new2               | 200 | -3.92   | 18.34   | 6.2139 | 4.04366        |
|               | Valid N (listwise) | 200 |         |         |        |                |
| 3             | new2               | 200 | -1.40   | 18.34   | 6.2341 | 3.97070        |
|               | Valid N (listwise) | 200 |         |         |        |                |
| 4             | new2               | 200 | -3.36   | 18.34   | 6.1913 | 4.03663        |
|               | Valid N (listwise) | 200 |         |         |        |                |
| 5             | new2               | 200 | -5.65   | 18.34   | 6.1542 | 4.11310        |
|               | Valid N (listwise) | 200 |         |         |        |                |
| Pooled        | new2               | 200 |         |         | 6.2123 |                |
|               | Valid N (listwise) | 200 |         |         |        |                |

Note that the pooled mean of 6.21 is better than the listwise value of 6.43 in approximating the correct value of 5.93 but there is still some bias due to the fact that it was missing not at random (MNAR)

## Missing Data Estimation with FIML in Mplus

- Continuing with our example, I specify a simple basic analysis in Mplus.
- I start with a LISTWISE deletion.
- As can be seen below, 10 cases are deleted (200 -10 = 190)

```
DATA:
  FILE IS C:\Users\ptrembla\Documents\Longitudinal course\LGM examples\rep1-missing.dat;
LISTWISE=ON:
VARIABLE:
  MISSING ARE ALL (999);
  NAMES ARE x1 x2 x3 x4 x5 new1 new2;
  USEVARIABLES ARE x1 x2 x3 x4 new2;
ANALYSIS:
type = basic;
OUTPUT: sampstat;
SUMMARY OF ANALYSIS
Number of groups
Number of observations
                                                         190
                                                           5
Number of dependent variables
Number of independent variables
Number of continuous latent variables
Observed dependent variables
  Continuous
      X2 X3 X4
                                              NEW2
Estimator
                                                          ML
```

## Missing Data Estimation in Mplus: Listwise Deletion

#### SAMPLE STATISTICS

|      | Means<br>X1  | X2     | хз     | X4     | NEW2   |
|------|--------------|--------|--------|--------|--------|
| 1    | 5.211        | 5.798  | 6.202  | 6.202  | 6.426  |
|      | Covariances  |        |        |        |        |
|      | X1           | X2     | Х3     | X4     | NEW2   |
| X1   | 13.320       |        |        |        |        |
| X2   | 9.709        | 14.095 |        |        |        |
| X3   | 7.256        | 9.392  | 13.196 |        |        |
| X4   | 6.727        | 9.003  | 9.925  | 16.521 |        |
| NEW2 | 6.853        | 7.777  | 9.549  | 10.640 | 15.592 |
| NLHZ | 0.000        | 7.777  | 3.313  | 10.010 | 13.332 |
|      | Correlations |        |        |        |        |
|      | X1           | X2     | ХЗ     | X4     | NEW2   |
| X1   | 1.000        |        |        |        |        |
| X2   | 0.709        | 1.000  |        |        |        |
| X3   | 0.547        | 0.689  | 1.000  |        |        |
| X4   | 0.453        | 0.590  | 0.672  | 1.000  |        |
| NEW2 | 0.476        | 0.525  |        | 0.663  | 1.000  |
| NEWZ | 0.4/6        | 0.525  | 0.666  | 0.003  | 1.000  |

 As can be seen all means are biased (compare to SPSS) but New2 has the same value in both analyses as expected

#### **Descriptive Statistics**

|                    | N   | Maximum   | Mean       | Std. Deviation |
|--------------------|-----|-----------|------------|----------------|
| x1                 | 200 | 16.505708 | 5.04160956 | 3.688753275    |
| x2                 | 200 | 19.249330 | 5.59053005 | 3.816377768    |
| х3                 | 200 | 14.869597 | 5.93351681 | 3.804905237    |
| x4                 | 200 | 17.939640 | 5.86592636 | 4.238476275    |
| new2               | 190 | 18.34     | 6.4263     | 3.94866        |
| x5                 | 200 | 18.340545 | 5.92731016 | 4.438446019    |
| Valid N (listwise) | 190 |           |            |                |

From SPSS

## **Maximum Likelihood Estimation of Missing Data:???**

- In this example I use the default ML missing data estimation.
- However, I have only one variable in my model: New2
- There is no other information for estimating missing data
- Therefore the results remain the same (i.e., mean = 6.426)

```
DATA:
  FILE IS C:\Users\ptrembla\Documents\Longitudinal course\LGM examples\rep1-missing.dat;
VARIABLE:
 MISSING ARE ALL (999);
 NAMES ARE x1 x2 x3 x4 x5 new1 new2;
 USEVARIABLES new2:
ANALYSIS:
type = basic;
OUTPUT: sampstat;
 SUMMARY OF ANALYSIS
Number of groups
                                                                             ESTIMATED SAMPLE STATISTICS
 Number of observations
                                                               190
 Number of dependent variables
                                                                 1
                                                                                   Means
 Number of independent variables
                                                                                       NEW2
 Number of continuous latent variables
                                                                                        6.426
                                                                              1
 Observed dependent variables
   Continuous
   NEW2
Estimator
                                                               ML
```

## **Maximum Likelihood Estimation of Missing Data**

- Now we have x1 x2 x3 x4 in the model that will perhaps help in the estimation
- Note that we have 200 cases (not 190)

```
DATA:
  FILE IS C:\Users\ptrembla\Documents\Longitudinal course\LGM examples\rep1-missing.dat;
VARIABLE:
  MISSING ARE ALL (999);
 NAMES ARE x1 x2 x3 x4 x5 new1 new2;
 USEVARIABLES x1 x2 x3 x4 new2;
ANALYSIS:
type = basic;
OUTPUT: sampstat;
SUMMARY OF ANALYSIS
Number of groups
Number of observations
                                                             200
Number of dependent variables
Number of independent variables
Number of continuous latent variables
Observed dependent variables
  Continuous
  X1
              X2 X3
                                     X4
                                                 NEW2
                                                              MT.
Estimator
```

## **Maximum Likelihood Estimation of Missing Data**

SUMMARY OF DATA Number of missing data patterns SUMMARY OF MISSING DATA PATTERNS MISSING DATA PATTERNS (x = not missing)NEW2 × MISSING DATA PATTERN FREQUENCIES Pattern Frequency Pattern 190 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage Х3 X4 NEW2 1.000 X1 X2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.950

0.950

0.950

0.950

0.950

Two patterns of missing data:

- 1. No values missing
- 2. Values missing on New2

## **Maximum Likelihood Estimation of Missing Data**

- Note that the mean for New2 is now 6.180. This value is comparable to the multiple imputed value of 6.21 on the SPSS analysis
- Due the MNAR mechanism it was impossible to eliminate all the bias

#### ESTIMATED SAMPLE STATISTICS

|      | Means<br>X1       | X2     | хз     | X4     | NEW2   |                |                          |     |                 |            |                |  |  |  |  |  |    |  |     |           |            |             |
|------|-------------------|--------|--------|--------|--------|----------------|--------------------------|-----|-----------------|------------|----------------|--|--|--|--|--|----|--|-----|-----------|------------|-------------|
|      |                   |        |        |        |        |                | - 1                      |     | \               |            |                |  |  |  |  |  |    |  |     |           |            |             |
| 1    | 5.042             | 5.591  | 5.934  | 5.866  | 6.180  | /              | / Sd = sqr(16.38) = 4.05 |     |                 |            |                |  |  |  |  |  |    |  |     |           |            |             |
|      | G                 |        |        |        |        |                |                          |     |                 |            |                |  |  |  |  |  |    |  |     |           |            |             |
|      | Covariances<br>X1 | X2     | Х3     | X4     | NEW2   |                |                          |     |                 |            |                |  |  |  |  |  |    |  |     |           |            |             |
| X1   | 13.539            |        |        |        |        |                |                          | D   | i4i C4-4i       | 4:         |                |  |  |  |  |  |    |  |     |           |            |             |
| X2   | 9.936             | 14.492 |        |        | /      |                |                          | Des | criptive Statis | tics       |                |  |  |  |  |  |    |  |     |           |            |             |
| хз   | 7.888             | 10.226 | 14.405 |        |        |                |                          | N   | Maximum         | Mean       | Std. Deviation |  |  |  |  |  |    |  |     |           |            |             |
| X4   | 7.488             | 9.878  | 11.112 | 17.875 |        | _ <del> </del> |                          |     |                 |            |                |  |  |  |  |  |    |  |     |           |            |             |
| NEW2 | 7.410             | 8.450  | 10.524 | 11.685 | 16.380 | x1             |                          | 200 | 16.505708       | 5.04160956 | 3.688753275    |  |  |  |  |  |    |  |     |           |            |             |
|      |                   |        |        |        |        | x2             |                          | 200 | 19.249330       | 5.59053005 | 3.816377768    |  |  |  |  |  |    |  |     |           |            |             |
|      | Correlations      |        |        |        |        |                |                          |     |                 |            |                |  |  |  |  |  | ×3 |  | 200 | 14.869597 | 5.93351681 | 3.804905237 |
|      | X1                | X2     | Х3     | X4     | NEW2   | x4             |                          | 200 | 17.939640       | 5.86592636 | 4.238476275    |  |  |  |  |  |    |  |     |           |            |             |
| X1   | 1.000             |        |        |        |        | new            | 2                        | 190 | 18.34           | 6.4263     | 3.94866        |  |  |  |  |  |    |  |     |           |            |             |
| X2   | 0.709             | 1.000  |        |        |        | x5             |                          | 200 | 18.340545       | 5.92731016 | 4.438446019    |  |  |  |  |  |    |  |     |           |            |             |
| ХЗ   | 0.565             | 0.708  | 1.000  |        |        | - 1            |                          | 200 | 10.340343       | 5.92731010 | 4.430440013    |  |  |  |  |  |    |  |     |           |            |             |
| X4   | 0.481             | 0.614  | 0.692  | 1.000  |        | Valid          | l N (listwise)           | 190 |                 |            |                |  |  |  |  |  |    |  |     |           |            |             |
| NEW2 | 0.498             | 0.548  | 0.685  | 0.683  | 1.000  |                |                          | •   |                 |            |                |  |  |  |  |  |    |  |     |           |            |             |

## Mplus Examples: Maximum Likelihood Estimation Auxiliary Variables

The analysis below is similar to the previous one with the exception that x1, x2, x3, x4 are not brought into the model but are used to estimate missing data in New2. (Produces identical estimates)

```
DATA:
  FILE IS C:\Users\ptrembla\Documents\Longitudinal course\LGM examples\rep1-missing.dat;
VARIABLE:
  MISSING ARE ALL (999);
  NAMES ARE x1 x2 x3 x4 x5 new1 new2:
                                                Specification of auxiliary variables in missing
  USEVARIABLES new2:
  AUXILIARY = (m) x1 x2 x3 x4;
                                                 analysis (m)
ANALYSIS:
MODEL:
                                                                                           ESTIMATED SAMPLE STATISTICS
new2:
OUTPUT: sampstat;
                                                                                                Means
                                                                                                   NEW2
    SUMMARY OF ANALYSIS
                                                                                                     6.180
    Number of groups
                                                             200
    Number of observations
                                                                                                Covariances
                                                                                                   NEW2
    Number of dependent variables
                                                              1
    Number of independent variables
                                                                                                   16.380
                                                                                       NEW2
    Number of continuous latent variables
    Observed dependent variables
                                                                                                Correlations
                                                                                                   NEW2
      Continuous
      NEW2
                                                                                       NEW2
                                                                                                     1.000
    Observed auxiliary variables
      X1
                            X3
                                       X4
                                                             ML
    Estimator
```

## **Imputation in Mplus**

# EXAMPLE 11.6: MULTIPLE IMPUTATION FOLLOWED BY THE ESTIMATION OF A GROWTH MODEL USING MAXIMUM LIKELIHOOD

```
TITLE: this is an example of multiple imputation
```

followed by the estimation of a growth

model using maximum likelihood

DATA: FILE = ex11.6.dat; VARIABLE: NAMES = x1 y1-y4 z x2;

USEVARIABLES =  $y1-y4 \times 1 \times 2$ ;

MISSING = ALL(999);

DATA IMPUTATION:

IMPUTE =  $y1-y4 \times 1$  (c) x2;

NDATASETS = 10; ANALYSIS: ESTIMATOR = ML;

MODEL: i s | y100 y201 y302 y403;

i s ON x1 x2;

OUTPUT: TECH1 TECH8;

See p. 398-399 Mplus manual Version 7