PSY 9556B (Jan 29) Longitudinal Measurement/Factorial Invariance

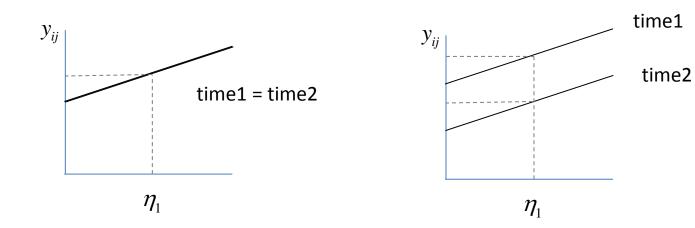
- 1. Configural invariance (identical factorial structures)
- 2. Weak invariance (identical indicator loadings)
- 3. Strong invariance (identical indicator intercepts)
- 4. Strict invariance (identical indicator residuals)

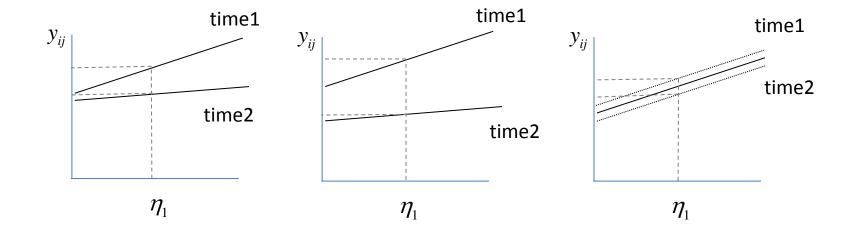
Means of the latent variables

Variances of the latent variables

Covariances (or correlations) of the latent variables

Why Measurement Invariance is Needed

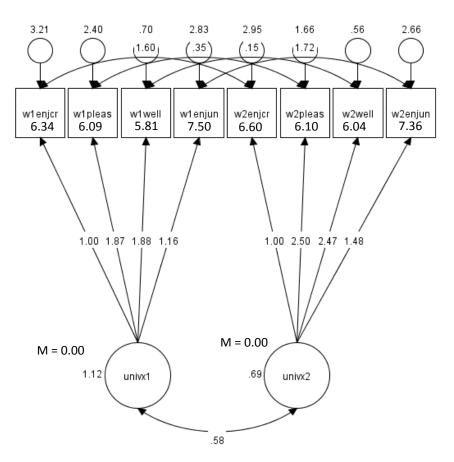

Consider the relation between a latent variable and one of its indicator variable


This relation could be expressed as a regression equation in which we predict the indicator variable score from the latent variable score.

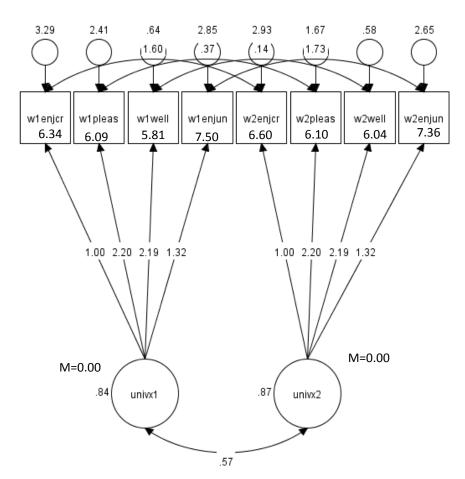
$$y_{ij} = au_j + \lambda_{j1} \eta_{1i} + r_{ij}$$
 $y_{ij} = au_j + \lambda_{j1} \eta_{1i} + s_{ij} + e_{ij}$
 $y_{ij} = ext{Person (i)'s value on indicator (j)}$
 $au_j = ext{Intercept (Person (i)'s value on indicator (j) when latent mean = 0}$
 $\lambda_{j1} = ext{Loading (regression coefficient/slope)}$
 $\eta_{1i} = ext{Person (i)'s value on Latent variable 1}$
 $r_{ij} = ext{Residual}$
 $s_{ij} = ext{Residual part consisting of systematic variance}$

 e_{ij} = Residual part consisting of random fluctuations/unreliability

Why Measurement Invariance is Needed



Configural Invariance


```
MODEL:
univx1 by w1enjcr w1pleas w1well w1enjun;
univx2 by w2enjcr w2pleas w2well w2enjun;
w1enjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well;
w1enjun with w2enjun;
output: sampstat residual stdyx tech4 modindices;
```

$$\chi^2_{(15)}$$
 = 55.002, p < .001
CFI = .976
TLI = .955
RMSEA = .080 (CI=.058 .104)

Weak (Loadings) Invariance

```
MODEL:
univx1 by wlenjcr
w1pleas (2)
w1well (3)
wlenjun (4);
univx2 by w2enjcr
w2pleas (2)
w2well (3)
w2enjun (4);
wlenjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well;
wlenjun with w2enjun;
output: sampstat residual stdyx tech4 modindices;
\chi^2_{(18)} = 61.290, p < .001
\Delta \chi^2_{(3)} = 6.288, n.s.
CFI = .974
\DeltaCFI = .002 pass
TLI = .959
RMSEA = .076 (CI = .056 .098)
```


Strong (Intercepts) Invariance

```
MODEL:
univx1 by wlenjcr
w1pleas (2)
w1well (3)
wlenjun (4);
[wlenjcr] (5)
[w1pleas] (6)
[w1well] (7)
[wlenjun] (8);
[univx1]; !the other mean left fixed at 0;
univx2 by w2enjcr
w2pleas (2)
w2well (3)
w2enjun (4);
[w2enjcr] (5)
[w2pleas] (6)
[w2well] (7)
[w2enjun] (8);
wlenjor with w2enjor;
w1pleas with w2pleas;
w1well with w2well:
wlenjun with w2enjun;
output: sampstat residual stdyx tech4 modindices (5);
```

```
\chi^2_{(21)} = 79.104, p < .001

\Delta \chi^2_{(3)} = 17.814, p < .001

CFI = .965

\DeltaCFI = .009 pass

TLI = .953

RMSEA = .082 (CI=.063 .102)
```

Although the test passes based on CFI <= .010, I am going to fail it given that it is close to the cutoff and I want an example to show you how to deal with partial invariance. So let's assume that the test failed.

Strong (Intercepts) Invariance

MODEL RESULTS									
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	Means UNIVX1	-0.070	0.045	-1.558	0.119
UNIVX1 BY					Intercepts				
W1ENJCR	1.000	0.000	999.000	999.000	W1ENJCR	6.514	0.091	71.552	0.000
W1PLEAS	2.175	0.181	12.050	0.000	W1PLEAS	6.157	0.118	52.086	0.000
W1WELL	2.174	0.186	11.655	0.000	W1WELL	6.001	0.109	54.821	0.000
W1ENJUN	1.296	0.121	10.700	0.000	W1ENJUN	7.466	0.098	76.013	0.000
					W2ENJCR	6.514	0.091	71.552	0.000
UNIVX2 BY					W2PLEAS	6.157	0.118	52.086	0.000
W2ENJCR	1.000	0.000	999.000	999.000	W2WELL	6.001	0.109	54.821	0.000
W2PLEAS	2.175	0.181	12.050	0.000	W2ENJUN	7.466	0.098	76.013	0.000
W2WELL	2.174	0.186	11.655	0.000					
W2ENJUN	1.296	0.121	10.700	0.000	Variances				
					UNIVX1	0.856	0.152	5.644	0.000
UNIVX2 WITH					UNIVX2	0.886	0.156	5.687	0.000
UNIVX1	0.577	0.110	5.244	0.000					
					Residual Variances				
W1ENJCR WITH					W1ENJCR	3.300	0.248	13.288	0.000
W2ENJCR	1.592	0.184	8.651	0.000	W1PLEAS	2.421	0.235	10.287	0.000
					W1WELL	0.631	0.169	3.744	0.000
W1PLEAS WITH					W1ENJUN	2.873	0.220	13.073	0.000
W2PLEAS	0.369	0.153	2.405	0.016	W2ENJCR	2.937	0.219	13.397	0.000
					W2PLEAS	1.679	0.190	8.814	0.000
W1WELL WITH					W2WELL	0.568	0.151	3.755	0.000
W2WELL	0.126	0.115	1.099	0.272	W2ENJUN	2.676	0.204	13.086	0.000
W1ENJUN WITH									
W2ENJUN	1.723	0.173	9.938	0.000					

Discuss the implication on latent means

Strong (Intercepts) Invariance

Given that the model failed the invariance of the intercepts test, we need to identify which intercept(s) are causing the test to fail

I will look at the modification indices and see if I should relax one constraint

alue for printing	the modifi	cation in	dex 5.00	0
	M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
ENJCR	5.851	0.269	0.249	0.122
ENJCR	6.669	0.243	0.229	0.112
ENJCR	5.851	-0.269	-0.253	-0.129
3				
W1ENJCR	5.754	-0.287	-0.287	-0.199
W1ENJCR	10.622	0.380	0.380	0.124
W1PLEAS	12.514	-0.493	-0.493	-0.187
W1ENJUN	8.883	-0.331	-0.331	-0.114
W2ENJCR	10.759	-0.350	-0.350	-0.271
W2PLEAS	12.709	0.784	0.784	0.803
W2ENJCR	13.183	0.386	0.386	0.138
ts/Thresholds				
	6.558	-0.188	-0.188	-0.087
	9.909	0.149	0.149	0.072
	6.557	0.035	0.035	0.016
	9.910	-0.104	-0.104	-0.051
	ENJCR ENJCR ENJCR N1ENJCR N1ENJCR N1ENJCR N1PLEAS N1ENJUN N2ENJCR N2PLEAS	M.I. ENJCR 5.851 ENJCR 6.669 ENJCR 5.851 WIENJCR 5.754 WIENJCR 10.622 WIPLEAS 12.514 WIENJUN 8.883 WIENJUN 8.883 WIENJUN 10.759 WIENJUN 10.	M.I. E.P.C. ENJCR 5.851 0.269 ENJCR 6.669 0.243 ENJCR 5.851 -0.269 WIENJCR 5.754 -0.287 WIENJCR 10.622 0.380 WIPLEAS 12.514 -0.493 WIENJUN 8.883 -0.331 WIENJUN 8.883 -0.331 WIENJUR 10.759 -0.350 WIENJUR 10.759 0.784 WIENJCR 12.709 0.784 WIENJCR 13.183 0.386 ES/Thresholds 6.558 -0.188 9.909 0.149 6.557 0.035	ENJCR 6.669 0.243 0.229 ENJCR 5.851 -0.269 -0.253 W1ENJCR 5.754 -0.287 -0.287 W1ENJCR 10.622 0.380 0.380 W1PLEAS 12.514 -0.493 -0.493 W1ENJUN 8.883 -0.331 -0.331 W2ENJCR 10.759 -0.350 -0.350 W2PLEAS 12.709 0.784 0.784 W2ENJCR 13.183 0.386 0.386 Es/Thresholds 6.558 -0.188 -0.188 9.909 0.149 0.149 6.557 0.035 0.035

Strong (Intercepts) Partial Invariance

I will run the model constraining the intercepts with the exception of w1enjun and w2enjun and repeat the nested chi-square and CFI difference tests

```
MODEL:
univx1 by wlenjcr
                                                                        (earlier test)
w1pleas (2)
                                                                        \chi^{2}_{(21)} = 79.104, p < .001
w1well (3)
wlenjun (4);
                                                                        \Delta \chi^2_{(3)} = 17.814, p < .001
[wlenjcr] (5)
[w1pleas] (6)
                                                                        CFI = .965
[w1well] (7)
[wlenjun]; !remove constraint partial invariance
                                                                        \DeltaCFI = .009 pass (but I failed it)
[univx1] ; !the other mean left fixed at 0;
univx2 by w2enjcr
                                                                        TII = .953
w2pleas (2)
                                                                        RMSEA = .082 (CI = .063 .102)
w2well (3)
w2enjun (4);
[w2enjcr] (5)
[w2pleas] (6)
                                                                      \chi^{2}_{(20)} = 69.035, p < .001
[w2well] (7)
[w2enjun]; !remove constraint partial invariance;
                                                                      \Delta \chi^2_{(2)} = 7.745, p < .05
wlenjor with w2enjor;
w1pleas with w2pleas;
                                                                      CFI = .970
w1well with w2well;
wlenjun with w2enjun;
                                                                      \Delta CFI = .004 \text{ pass} - \text{partial inv}
output: sampstat residual stdyx tech4 modindices (5);
                                                                      TII = .958
                                                                      RMSEA = .077 (CI = .058 .097)
```

Strong (Intercepts) Partial Invariance

I accept the model with partial invariance in the intercepts

MODEL RESULTS

				Two-Tailed	Intercepts				
	Estimate	S.E.	Est./S.E.	P-Value	W1ENJCR	6.523	0.091	71.655	0.000
					W1PLEAS	6.175	0.118	52.254	0.000
UNIVX1 BY					W1WELL	6.023	0.109	55.049	0.000
W1ENJCR	1.000	0.000	999.000	999.000	W1ENJUN	7.616	0.109	70.089	0.000
W1PLEAS	2.167	0.180	12.067	0.000	W2ENJCR	6.523	0.091	71.655	0.000
W1WELL	2.170	0.186	11.685	0.000	W2PLEAS	6.175	0.118	52.254	0.000
W1ENJUN	1.311	0.121	10.800	0.000	W2WELL	6.023	0.109	55.049	0.000
					W2ENJUN	7.362	0.103	71.494	0.000
UNIVX2 BY									
W2ENJCR	1.000	0.000	999.000	999.000	Variances				
W2PLEAS	2.167	0.180	12.067	0.000	UNIVX1	0.859	0.152	5.656	0.000
W2WELL	2.170	0.186	11.685	0.000	UNIVX2	0.889	0.156	5.698	0.000
W2ENJUN	1.311	0.121	10.800	0.000					
					Residual Variances				
UNIVX2 WITH					W1ENJCR	3.297	0.248	13.292	0.000
UNIVX1	0.578	0.110	5.250	0.000	W1PLEAS	2.438	0.235	10.384	0.000
					W1WELL	0.626	0.167	3.755	0.000
W1ENJCR WITH					W1ENJUN	2.854	0.218	13.107	0.000
W2ENJCR	1.594	0.184	8.666	0.000	W2ENJCR	2.935	0.219	13.399	0.000
					W2PLEAS W2WELL	1.686 0.565	0.189 0.149	8.921 3.788	0.000
W1PLEAS WITH					W2WELL W2ENJUN	2.651	0.149	13.128	0.000
W2PLEAS	0.362	0.153	2.362	0.018	WZENOUN	2.651	0.202	13.120	0.000
W1WELL WITH									
W2WELL	0.130	0.114	1.138	0.255					
W1ENJUN WITH									
W2ENJUN	1.732	0.173	10.035	0.000					
Means									
UNIVX1	-0.091	0.046	-2.003	0.045					

Test of Latent Means

```
MODEL:
univx1 by wlenjcr
w1pleas (2)
w1well (3)
wlenjun (4);
[wlenjcr] (5)
[w1pleas] (6)
[w1well] (7)
[wlenjun] ; !remove constraint partial invariance;
![univx1] now both means are fixed at zero and therefore constrained;
univx2 by w2enjcr
w2pleas (2)
w2well (3)
w2enjun (4);
                                                              \chi^2_{(21)} = 73.121, p < .001
[w2enjcr] (5)
[w2pleas] (6)
                                                              \Delta \chi^2_{(1)} = 4.086, p < .05
[w2well] (7)
[w2enjun] ; !remove constraint partial invariance;
                                                              CFI = .968
wlenjcr with w2enjcr;
                                                              \Lambda CFI = .002
w1pleas with w2pleas;
w1well with w2well;
                                                              TLI = .958
wlenjun with w2enjun;
output: sampstat residual stdyx tech4 modindices;
                                                              RMSEA = .078 (CI = .059 .097)
```

What would you conclude about the latent means?

Strict (Residuals) Invariance

Let's go back to the partial invariance model before constraining the latent means and add equality constraints to the indicator residuals across time

```
MODEL:
univx1 by wlenjcr
w1pleas (2)
w1well (3)
wlenjun (4);
[wlenjcr] (5)
[w1pleas] (6)
[w1well] (7)
[wlenjun]; !remove constraint partial invariance
[univx1]; !the other mean left fixed at 0;
univx2 by w2enjcr
w2pleas (2)
w2well (3)
w2enjun (4);
[w2enjcr] (5)
[w2pleas] (6)
[w2well] (7)
[w2enjun]; !remove constraint partial invariance;
wlenjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well;
wlenjun with w2enjun;
wlenjcr (9) !residual constraints
w1pleas (10)
w1well (11)
wlenjun (12);
w2enjcr (9)
w2pleas (10)
w2well (11)
w2enjun (12);
output: sampstat residual stdyx tech4 modindices (5)
```

```
\chi^2_{(24)} = 81.250, p < .001

\Delta \chi^2_{(4)} = 12.215, p < .05

CFI = .965

\DeltaCFI = .005 pass

TLI = .960

RMSEA = .076 (CI=.058 .095)
```

Strict (Residuals) Invariance

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	Means UNIVX1	-0.092	0.046	-2.004	0.045
UNIVX1 BY					Intercepts				
W1ENJCR	1.000	0.000	999.000	999.000	W1ENJCR	6.515	0.091	71.382	0.000
W1PLEAS	2.125	0.174	12.189	0.000	W1PLEAS	6.195	0.118	52.312	0.000
W1WELL	2.144	0.182	11.753	0.000	W1WELL	6.022	0.109	55.141	0.000
W1ENJUN	1.290	0.119	10.888	0.000	W1ENJUN	7.615	0.103	70.948	0.000
UNIVX2 BY					W2ENJCR	6.515	0.091	71.382	0.000
W2ENJCR	1.000	0.000	999.000	999.000	W2PLEAS	6.195	0.118	52.312	0.000
W2PLEAS	2.125	0.174	12.189	0.000	W2WELL	6.022	0.109	55.141	0.000
W2WELL	2.144	0.182	11.753	0.000	W2ENJUN	7.363	0.104	70.751	0.000
W2ENJUN	1.290	0.119	10.888	0.000					
UNIVX2 WITH					Variances				
UNIVX2 WITH	0.596	0.113	5.299	0.000	UNIVX1	0.890	0.156	5.715	0.000
ONIVAL	0.596	0.113	5.299	0.000	UNIVX2	0.905	0.157	5.768	0.000
W1ENJCR WITH									
W2ENJCR	1.594	0.184	8.643	0.000	Residual Variances				
					W1ENJCR	3.113	0.185	16.857	0.000
W1PLEAS WITH					W1PLEAS	2.083	0.166	12.536	0.000
W2PLEAS	0.376	0.155	2.427	0.015	W1WELL	0.581	0.137	4.250	0.000
					W1ENJUN	2.759	0.173	15.908	0.000
W1WELL WITH	0.110	0 115	0.958	0.000	W2ENJCR	3.113	0.185	16.857	0.000
W2WELL	0.110	0.115	0.958	0.338	W2PLEAS	2.083	0.166	12.536	0.000
W1ENJUN WITH					W2FLEAS W2WELL	0.581	0.137	4.250	
WIENJUN WITH W2ENJUN	1.735	0.173	10.041	0.000					0.000
WZENOUN	1./35	0.1/3	10.041	0.000	W2ENJUN	2.759	0.173	15.908	0.000

Are the Latent Variances Different?

univx1 (13) $\chi^2_{(25)} = 81.286, p < .001$ univx2 (13); $\Delta \chi^2_{(1)} = 0.036, \text{ n.s.}$ CFI = .966 Δ CFI = +.001 pass TLI = .962 RMSEA = .074 (CI=.058 .095)

Null Model According to Little

```
!appropriate null model
ANALYSIS: Model = NOCOVARIANCES:
MODEL:
    wlenjcr w2enjcr (p1);
    w1pleas w2pleas (p2);
    w1well w2well (p3);
    wlenjun w2enjun (p4);
    [wlenjcr w2enjcr] (a1);
    [w1pleas w2pleas] (a2);
    [w1well w2well] (a3);
   [wlenjun w2enjun] (a4);
OUTPUT:
TECH1
STANDARDIZED:
MODEL RESULTS
                                               Two-Tailed
                  Estimate
                               S.E. Est./S.E.
                                                 P-Value
Means
                     6.467
                               0.073
                                        88.596
                                                   0.000
   W1ENJCR
   W1PLEAS
                     6.109
                               0.090
                                        68.133
                                                   0.000
                                        75.703
                                                   0.000
   W1WELL
                     5.931
                               0.078
   W1ENJUN
                     7.428
                               0.075
                                        99.189
                                                   0.000
                     6.467
                               0.073
                                       88.596
                                                   0.000
   W2ENJCR
                     6.109
                               0.090
                                        68.133
                                                   0.000
   W2PLEAS
                     5.931
                               0.078
                                        75.703
                                                   0.000
   W2WELL
   W2ENJUN
                     7.428
                               0.075
                                        99.189
                                                   0.000
Variances
   W1ENJCR
                     4.093
                               0.209
                                        19.596
                                                   0.000
                     6.141
   W1PLEAS
                               0.314
                                        19.545
                                                   0.000
                     4.701
                               0.240
                                       19.571
                                                   0.000
   W1WELL
   W1ENJUN
                     4.312
                               0.220
                                       19.608
                                                   0.000
   W2ENJCR
                     4.093
                               0.209
                                       19.596
                                                   0.000
                     6.141
                                                   0.000
   W2PLEAS
                               0.314
                                        19.545
                     4.701
                               0.240
                                                   0.000
   W2WELL
                                        19.571
                     4.312
                                       19.608
   W2ENJUN
                               0.220
                                                   0.000
```

Chi-Squar	e Test of Model Fit		
000000000000000000000000000000000000000	Value Degrees of Freedom P-Value	1687.439 36 0.0000	
RMSEA (Ro	ot Mean Square Error Of Appr	coximation)	
000000000000000000000000000000000000000	Estimate 90 Percent C.I. Probability RMSEA <= .05	0.334 0.320 0.000	0.347
CFI/TLI			
***************************************	CFI TLI	0.000 0.222	
Chi-Squar	e Test of Model Fit for the	Baseline Model	
100000000000000000000000000000000000000	Value Degrees of Freedom P-Value	1678.803 28 0.0000	

Null Model According to Little

Earlier tests based on conventional CFI

$$\chi^2_{(21)}$$
 = 79.104, p < .001
 $\Delta \chi^2_{(3)}$ = 17.814, p < .001
CFI = .965
 Δ CFI = .009 pass (but I failed it)
TLI = .953
RMSEA = .082 (CI=.063 .102)

Calculating new CFI Null $\chi^2_{(36)}$ =1687.439

$$CFI = 1 - \frac{\max\left[\left(x_{t}^{2} - df_{t}\right), 0\right]}{\max\left[\left(x_{t}^{2} - df_{t}\right), \left(x_{0}^{2} - df_{0}\right), 0\right]}$$

$$CFI = 1 - (58.104/1651.439) = .965$$

(note that the remaining slides repeat the earlier analyses with Little's method of scaling)

Configural Invariance with Effect Coded Scaling

```
MODEL:
univx1 by wlenjcr* (L1)
w1pleas (L2)
w1well (L3)
w1enjun (L4);
                                                \chi^2_{(15)} = 55.002, p < .001
univx2 by w2enjcr* (L5)
                                                CFI = .976
w2pleas (L6)
                                                TLI = .955
w2well (L7)
w2enjun (L8);
                                                RMSEA = .080 (CI = .058 .104)
wlenjor with w2enjor;
w1pleas with w2pleas;
w1well with w2well;
wlenjun with w2enjun;
[univx1 univx2];
[wlenjcr] (T1)
[w1pleas] (T2)
[w1well] (T3)
[wlenjun] (T4);
[w2enjcr] (T5)
[w2pleas] (T6)
[w2well] (T7)
[w2enjun] (T8);
MODEL CONSTRAINT: L1 = 4 - L2 - L3 - L4;
                 T1 = 0 - T2 - T3 - T4:
                 L5 = 4 - L6 - L7 - L8:
                 T5 = 0 - T6 - T7 - T8:
output: sampstat residual stdyx tech4 modindices;
```

Configural Invariance with Effect Coded Scaling

MODEL RESULTS									
				Two-Tailed	Means				
	Estimate	S.E.	Est./S.E.	P-Value	UNIVX1	6.434	0.087	73.785	0.000
					UNIVX2	6.524	0.086	76.187	0.000
UNIVX1 BY									
W1ENJCR	0.677	0.051	13.231	0.000	Intercepts				
W1PLEAS	1.266	0.048	26.511	0.000	W1ENJCR	1.984	0.339	5.853	0.000
W1WELL	1.270	0.045	28.086	0.000	W1PLEAS	-2.055	0.316	-6.511	0.000
W1ENJUN	0.787	0.045	17.460	0.000	W1WELL	-2.362	0.297	-7.964	0.000
UNIVX2 BY					W1ENJUN	2.432	0.299	8.120	0.000
UNIVX2 BY W2ENJCR	0.537	0.049	10.956	0.000	W1ENJCR	3.094		9.408	
W2PLEAS	1.344	0.049	31.382	0.000			0.329		0.000
W2FLEAS W2WELL	1.326	0.043	30.992	0.000	W2PLEAS	-2.666	0.286	-9.331	0.000
W2WELL W2ENJUN	0.793	0.043	18.488	0.000	W2WELL	-2.616	0.284	-9.216	0.000
WZENOON	0.733	0.043	10.400	0.000	W2ENJUN	2.188	0.289	7.581	0.000
UNIVX2 WITH					Variances				
UNIVX1	1.605	0.172	9.332	0.000	UNIVX1	2.440	0.213	11.446	0.000
					UNIVX1	2.398	0.215	11.688	0.000
W1ENJCR WITH					UNIVAZ	2.390	0.205	11.000	0.000
W2ENJCR	1.603	0.183	8.770	0.000					
					Residual Varian				
W1PLEAS WITH					W1ENJCR	3.213	0.245	13.131	0.000
W2PLEAS	0.353	0.151	2.340	0.019	W1PLEAS	2.398	0.233	10.299	0.000
					W1WELL	0.703	0.172	4.088	0.000
W1WELL WITH	0.454				W1ENJUN	2.830	0.218	12.982	0.000
W2WELL	0.151	0.113	1.338	0.181	W2ENJCR	2.946	0.219	13.473	0.000
MARNITH MITTE					W2PLEAS	1.656	0.197	8.396	0.000
W1ENJUN WITH	1 725	0 172	10.005	0.000	W2WELL	0.556	0.159	3.501	0.000
W2ENJUN	1.725	0.172	10.005	0.000	W2ENJUN	2.658	0.203	13.123	0.000
						2			2.230

Weak (Loadings) Invariance with Effect Coded Scaling

```
MODEL:
univx1 by wlenjcr* (L1)
w1pleas (L2)
w1well (L3)
wlenjun (L4);
univx2 by w2enjcr* (L1)
                                                         \chi^2_{(18)} = 61.290, p < .001
w2pleas (L2)
                                                         \Delta \chi^2_{(3)} = 6.288, n.s.
w2well (L3)
w2enjun (L4);
                                                         CFI = .974
wlenjcr with w2enjcr;
w1pleas with w2pleas;
                                                         \DeltaCFI = .002 pass
w1well with w2well:
                                                         TLI = .959
wlenjun with w2enjun;
[univx1 univx2];
                                                         RMSEA = .076 (CI = .056 .098)
[wlenjcr] (T1)
[w1pleas] (T2)
[w1well] (T3)
[wlenjun] (T4);
[w2enjcr] (T5)
[w2pleas] (T6)
[w2well] (T7)
[w2enjun] (T8);
MODEL CONSTRAINT: L1 = 4 - L2 - L3 - L4;
               T1 = 0 - T2 - T3 - T4;
           ! L5 = 4 - L6 - L7 - L8:
                T5 = 0 - T6 - T7 - T8:
output: sampstat residual stdyx tech4 modindices;
```

Weak (Loadings) Invariance with Effect Coded Scaling

MODEL RESULTS									
				Two-Tailed	Means UNIVX1	6.435	0.086	74.652	0.000
	Estimate	S.E.	Est./S.E.	P-Value	UNIVX2	6.524	0.086	75.465	0.000
UNIVX1 BY					Intercepts				
W1ENJCR	0.596	0.041	14.432	0.000	W1ENJCR	2 504	0 270	0.010	0 000
W1PLEAS	1.310	0.036	36.858	0.000		2.504	0.278	9.010	0.000
W1WELL	1.304	0.036	35.768	0.000	W1PLEAS	-2.340	0.239	-9.789	0.000
W1ENJUN	0.789	0.037	21.456	0.000	W1WELL	-2.585	0.241	-10.718	0.000
					W1ENJUN	2.421	0.247	9.783	0.000
UNIVX2 BY					W2ENJCR	2.706	0.280	9.662	0.000
W2ENJCR	0.596	0.041	14.432	0.000	W2PLEAS	-2.449	0.240	-10.221	0.000
W2PLEAS	1.310	0.036	36.858	0.000	W2WELL	-2.474	0.243	-10.166	0.000
W2WELL	1.304	0.036	35.768	0.000	W2ENJUN	2.217	0.250	8.873	0.000
W2ENJUN	0.789	0.037	21.456	0.000					
					Variances				
UNIVX2 WITH					UNIVX1	2.368	0.204	11.596	0.000
UNIVX1	1.594	0.171	9.319	0.000	UNIVX2	2.452	0.206	11.883	0.000
W1ENJCR WITH					Residual Variance	8			
W2ENJCR	1.602	0.184	8.716	0.000	W1ENJCR	3.289	0.247	13.326	0.000
					W1PLEAS	2.409	0.234	10.304	0.000
W1PLEAS WITH					W1WELL	0.635	0.166	3.820	0.000
W2PLEAS	0.366	0.153	2.399	0.016	W1ENJUN	2.854	0.218	13.108	0.000
					W1ENJCR	2.930	0.218	13.425	0.000
W1WELL WITH									
W2WELL	0.137	0.114	1.202	0.229	W2PLEAS	1.666	0.189	8.822	0.000
					W2WELL	0.575	0.149	3.857	0.000
W1ENJUN WITH					W2ENJUN	2.650	0.202	13.134	0.000
W2ENJUN	1.731	0.173	10.032	0.000					

Strong (Intercepts) Invariance with Effect Coded Scaling

```
MODEL:
univx1 by wlenjcr* (L1)
w1pleas (L2)
w1well (L3)
wlenjun (L4);
univx2 by w2enjcr* (L1)
w2pleas (L2)
w2well (L3)
w2enjun (L4);
wlenjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well:
wlenjun with w2enjun;
[univx1 univx2];
[wlenjcr] (T1)
[w1pleas] (T2)
[w1well] (T3)
[w1enjun] (T4);
[w2enjcr] (T1)
[w2pleas] (T2)
[w2well] (T3)
[w2enjun] (T4);
MODEL CONSTRAINT: L1 = 4 - L2 - L3 - L4;
                  T1 = 0 - T2 - T3 - T4:
                 L5 = 4 - L6 - L7 - L8:
                 T5 = 0 - T6 - T7 - T8:
output: sampstat residual stdyx tech4 modindices (5);
```

```
\chi^2_{(21)} = 79.104, p < .001

\Delta \chi^2_{(3)} = 17.814, p < .001

CFI = .965

\DeltaCFI = .021 fail

TLI = .953

RMSEA = .082 (CI=.063 .102)
```

Strong (Intercepts) Invariance with Effect Coded Scaling

MODEL RESULTS									
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	Means UNIVX1 UNIVX2	6.418 6.534	0.085	75.320 76.049	0.000
UNIVX1 BY					Intercepts				
W1ENJCR	0.602	0.041	14.562	0.000	W1ENJCR	2.580	0.277	9.307	0.000
W1PLEAS	1.309	0.036	36.768	0.000	W1PLEAS	-2.399	0.237	-10.120	0.000
W1WELL	1.308	0.037	35.501	0.000	W1WELL	-2.549	0.243	-10.476	0.000
W1ENJUN	0.780	0.037	21.061	0.000	W1ENJUN	2.368	0.249	9.518	0.000
					W1ENJON W2ENJCR	2.580	0.277	9.307	0.000
UNIVX2 BY					W2PLEAS	-2.399	0.277	-10.120	0.000
W2ENJCR	0.602	0.041	14.562	0.000	W2WELL	-2.549	0.243	-10.120	0.000
W2PLEAS	1.309	0.036	36.768	0.000	W2WELL W2ENJUN	2.368	0.243	9.518	
W2WELL	1.308	0.037	35.501	0.000	WZENJUN	2.300	0.249	9.516	0.000
W2ENJUN	0.780	0.037	21.061	0.000	Variances				
UNIVX2 WITH					UNIVX1	2.362	0.204	11.583	0.000
UNIVX1	1.591	0.171	9.321	0.000	UNIVX2	2.444	0.206	11.865	0.000
W1ENJCR WITH					Residual Variance	es			
W2ENJCR	1.592	0.184	8.651	0.000	W1ENJCR	3.300	0.248	13.288	0.000
					W1PLEAS	2.421	0.235	10.287	0.000
W1PLEAS WITH					W1WELL	0.631	0.169	3.743	0.000
W2PLEAS	0.369	0.153	2.405	0.016	W1ENJUN	2.873	0.220	13.072	0.000
					W2ENJCR	2.937	0.219	13.397	0.000
W1WELL WITH					W2PLEAS	1.679	0.190	8.814	0.000
W2WELL	0.126	0.115	1.099	0.272	W2WELL	0.568	0.151	3.754	0.000
					W2ENJUN	2.676	0.204	13.086	0.000
W1ENJUN WITH									
W2ENJUN	1.723	0.173	9.937	0.000					

Strong (Intercepts) Partial Invariance with Effect Coded Scaling

```
MODEL:
univx1 by wlenjcr* (L1)
w1pleas (L2)
w1well (L3)
wlenjun (L4);
univx2 by w2enjcr* (L1)
w2pleas (L2)
w2well (L3)
w2enjun (L4);
wlenjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well;
wlenjun with w2enjun;
[univx1 univx2];
[wlenjcr] (T1)
[w1pleas] (T2)
[w1well] (T3)
[wlenjun] (T4);
[w2enjcr] (T1)
[w2pleas] (T2)
[w2well] (T3)
[w2enjun]; ! (T4)
MODEL CONSTRAINT: L1 = 4 - L2 - L3 - L4;
                  T1 = 0 - T2 - T3 - T4;
                 L5 = 4 - L6 - L7 - L8;
                  T5 = 0 - T6 - T7 - T8:
output: sampstat residual stdyx tech4 modindices (5);
```

```
\chi^2_{(20)} = 69.035, p < .001

\Delta \chi^2_{(2)} = 7.745, p < .05

CFI = .970

\DeltaCFI = .004 pass – partial inv

TLI = .958

RMSEA = .077 (CI=.058 .097)
```

Strong (Intercepts) Partial Invariance with Effect Coded Scaling

MODEL RESULTS									
				Two-Tailed					
	Estimate	S.E.	Est./S.E.	P-Value	Means				
					UNIVX1	6.433	0.085	75.423	0.000
UNIVX1 BY					UNIVX2	6.584	0.087	75.372	0.000
W1ENJCR	0.602	0.041	14.601	0.000					
W1PLEAS	1.304	0.035	36.792	0.000	Intercepts				
W1WELL	1.306	0.037	35.759	0.000	W1ENJCR	2.561	0.278	9.224	0.000
W1ENJUN	0.789	0.037	21.442	0.000	W1PLEAS	-2.409	0.237	-10.163	0.000
					W1WELL	-2.576	0.242	-10.632	0.000
UNIVX2 BY					W1ENJUN	2.424	0.248	9.790	0.000
W2ENJCR	0.602	0.041	14.601	0.000	W2ENJCR	2.561	0.278	9.224	0.000
W2PLEAS	1.304	0.035	36.792	0.000	W2PLEAS	-2.409	0.237	-10.163	0.000
W2WELL	1.306	0.037	35.759	0.000	W2WELL	-2.576	0.242	-10.632	0.000
W2ENJUN	0.789	0.037	21.442	0.000	W2ENJUN	2.170	0.255	8.499	0.000
UNIVX2 WITH					Variances				
UNIVX1	1.598	0.171	9.322	0.000	UNIVX1	2.371	0.204	11.599	0.000
W1ENJCR WITH					UNIVX2	2.455	0.207	11.878	0.000
W2ENJCR	1.594	0.184	8.666	0.000	Residual Variance				
					W1ENJCR	3.297	0.248	13.292	0.000
W1PLEAS WITH					W1PLEAS	2.438	0.235	10.384	0.000
W2PLEAS	0.362	0.153	2.362	0.018					
					W1WELL	0.626	0.167	3.754	0.000
W1WELL WITH					W1ENJUN	2.854	0.218	13.107	0.000
W2WELL	0.130	0.114	1.137	0.255	W2ENJCR	2.935	0.219	13.399	0.000
					W2PLEAS	1.686	0.189	8.921	0.000
W1ENJUN WITH					W2WELL	0.565	0.149	3.787	0.000
W2ENJUN	1.732	0.173	10.035	0.000	W2ENJUN	2.651	0.202	13.128	0.000

Test of Latent Means

```
MODEL:
univx1 by wlenjcr* (L1)
w1pleas (L2)
w1well (L3)
wlenjun (L4);
univx2 by w2enjcr* (L1)
w2pleas (L2)
w2well (L3)
w2enjun (L4);
wlenjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well:
wlenjun with w2enjun;
[univx1 univx2] (1); !constraining the two means to equality
[wlenjcr] (T1)
[w1pleas] (T2)
                                                                    \chi^2_{(21)} = 73.121, p < .001
[w1well] (T3)
[wlenjun] (T4);
                                                                    \Delta \chi^2_{(1)} = 4.086, p < .05
[w2enjcr] (T1)
[w2pleas] (T2)
                                                                    CFI = .968
[w2well] (T3)
                                                                    \Delta CFI = .002
[w2enjun]; ! (T4)
MODEL CONSTRAINT: L1 = 4 - L2 - L3 - L4:
                                                                    TLI = .958
                  T1 = 0 - T2 - T3 - T4:
                  L5 = 4 - L6 - L7 - L8:
                                                                    RMSEA = .078 (CI = .059 .097)
                  T5 = 0 - T6 - T7 - T8:
output: sampstat residual stdyx tech4 modindices (5);
```