### **PSY 9556B (Feb 5) Latent Growth Modeling**

- "Fixed" and "random" word confusion
- Simplest LGM knowing how to calculate dfs
- How many time points needed?
- Power, sample size
- Nonlinear growth quadratic
- Nonlinear growth freeing loadings
- Piecewise models
- Linear growth (different ways of scaling time)
- Associative LGM
- Higher order LGM: curve-of-factors model
- Conditional models (time-invariant, time-variant)
- Multiple groups (group covariate or multiple-groups analysis)
- Similarity between LGM and MLM
- When to use LGM, when to use MLM

#### "Fixed" and "Random" word clarification

- Fixed and random effects in MLM and LGM
  - Fixed effect: single values that estimate of population values
    - (e.g., a regression coefficient, a mean intercept or slope in LGM, MLM)
  - Random effect: provide information about the variation in the regression coefficient or intercept parameters across the clustering units
    - (e.g., variance of intercepts and slopes in LGM or MLM)
- Fixed and random factors in ANOVA
  - Fixed factor levels chosen apriori
  - Random factor: no particular interest in the levels; chosen at random
    - Best example of a random factor: persons
    - Repeated measures design
    - At least two observations nested within persons
    - Persons as a random factor is also referred to as the clustering unit or in MLM
- Mixed models
  - One fixed factor crossed with one random factor (e.g., split plot ANOVA)

# Number of Parameters and Degrees of Freedom Example: 2 time points (linear)

#### Parameters and dfs

```
Elements: (v (v+3))/2 = (2*5)/2 = 5
```

#### Parameters:

2 residuals (2 time points): left-over variance not explained by latent variables

1 mean intercept: the mean start-point of individual trajectories

1 mean slope: the mean slope (e.g., growth/learning/decrease) of individual trajectories

1 variance of the intercepts: variation in individual start-points

1 variance of the slopes: variation in individual slopes

1 correlation between intercept and slope

(note, indicator intercepts fixed at 0)

Total parameters = 7 dfs = to many parameters

# Number of Parameters and Degrees of Freedom Example: 3 time points (linear)

#### Parameters and dfs

```
Elements: (v (v+3))/2 = (3*6)/2 = 9
```

#### Parameters:

3 residuals (3 time points): left-over variance not explained by latent variables

1 mean intercept: the mean start-point of individual trajectories

1 mean slope: the mean slope (e.g., growth/learning/decrease) of individual trajectories

1 variance of the intercepts: variation in individual start-points

1 variance of the slopes: variation in individual slopes

1 correlation between intercept and slope

(note, indicator intercepts fixed at 0)

Total parameters = 
$$8$$
 dfs =  $9 - 8 = 1$ 

# Number of Parameters and Degrees of Freedom Example: 4 time points (linear + quadratic)

#### Parameters and dfs

#### **Elements:**

$$(4 (4+3))/2 = (4*7)/2 = 14$$

#### Parameters:

4 residuals (4 time points): left-over variance not explained by latent variables

1 mean intercept: the mean start-point of individual trajectories

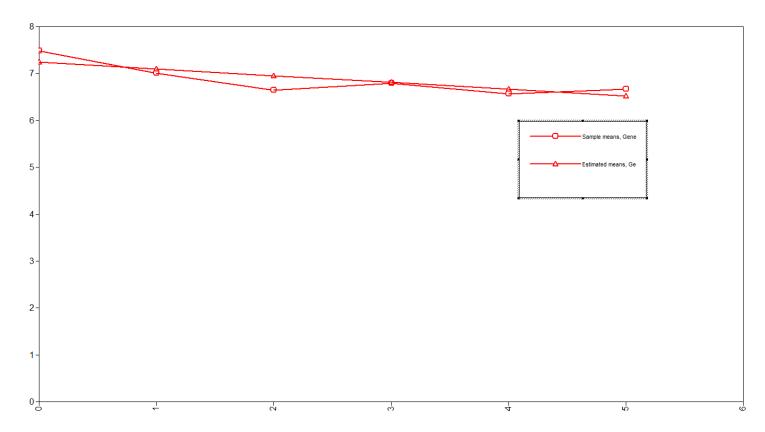
1 mean slope: the mean slope (e.g., growth/learning/decrease) of individual trajectories

1 mean quadratic component

1 variance of the intercepts: variation in individual start-points

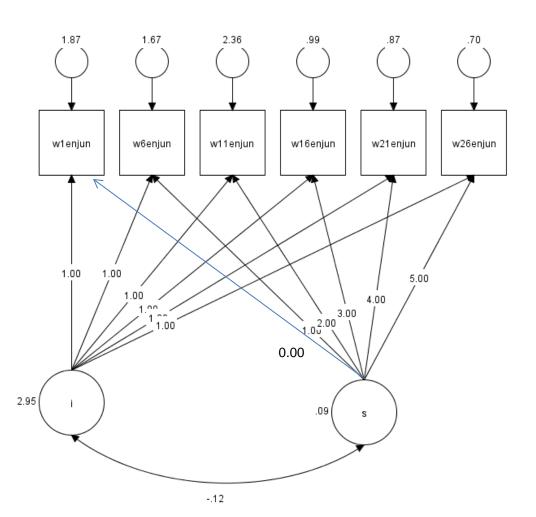
1 variance of the slopes: variation in individual slopes

1 variance of quadratic component


3 correlations between intercept, slope, quadratic

(note, indicator intercepts fixed at 0)

Total parameters = 
$$13$$
 dfs =  $14 - 13 = 1$ 

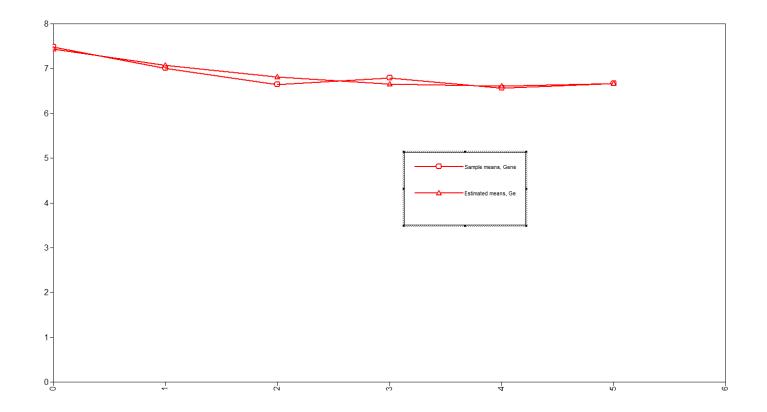

### **Example of a LGM with Five Time Points**

```
USEVARIABLES ARE wlenjun w6enjun w11enjun w16enjun w21enjun w26enjun;
model:
I S | w1enjun@0 w6enjun@1 w11enjun@2 w16enjun@3 w21enjun@4 w26enjun@5;
plot:
type=plot3;
series = w1enjun(0) w6enjun(1) w11enjun(2) w16enjun(3) w21enjun(4) w26enjun(5);
output: sampstat residual stdyx tech4 modindices;
```

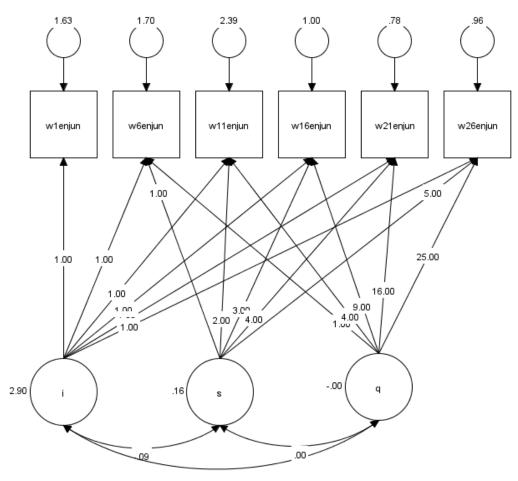


## **Example of a LGM with Five Time Points**

In this figure you should also indicate the means of the latent variables: Intercept = 2.948 and Slope = 0.094




## **Example of a LGM with Five Time Points**

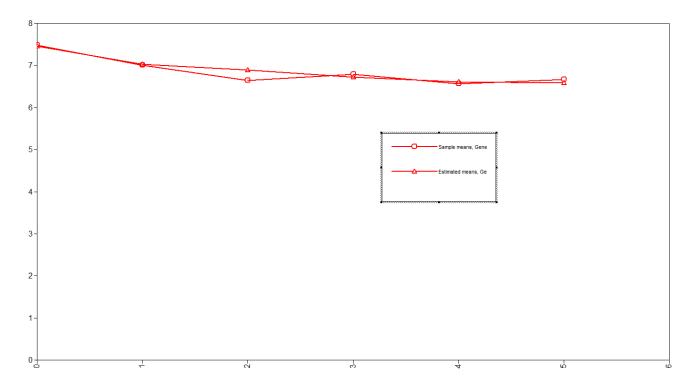

|              |                                |                |       |     |                          |             |       |           | Two-Tailed |
|--------------|--------------------------------|----------------|-------|-----|--------------------------|-------------|-------|-----------|------------|
| NT           | 5 F D                          |                |       |     |                          | Estimate    | S.E.  | Est./S.E. | P-Value    |
| Number of    | Free Parameters                | 11             |       |     |                          |             |       |           |            |
| Loglikeli    | ihood                          |                |       | I   | <br>W1ENJUN              | 1.000       | 0.000 | 999.000   | 999.000    |
| LOGITACIA    | illood                         |                |       |     | WIENJUN<br>W6ENJUN       | 1.000       | 0.000 | 999.000   | 999.000    |
|              | HO Value                       | -3779.045      |       |     | W11ENJUN                 | 1.000       | 0.000 | 999.000   | 999.000    |
|              | H1 Value                       | -3745.014      |       |     | W16ENJUN                 | 1.000       | 0.000 | 999.000   |            |
|              | ni value                       | -3/45.014      |       |     | W21ENJUN                 | 1.000       | 0.000 | 999.000   |            |
| Informati    | ion Criteria                   |                |       |     | W26ENJUN                 | 1.000       | 0.000 | 999.000   | 999.000    |
| 111101111001 | on orrection                   |                |       |     |                          |             |       |           |            |
|              | Akaike (AIC)                   | 7580.091       |       | S   | I                        |             |       |           |            |
|              | Bayesian (BIC)                 | 7624.349       |       |     | W1ENJUN                  | 0.000       | 0.000 | 999.000   | 999.000    |
|              | Sample-Size Adjusted BIC       | 7589.443       |       |     | W6ENJUN                  | 1.000       | 0.000 | 999.000   | 999.000    |
|              | (n* = (n + 2) / 24)            |                |       |     | W11ENJUN                 | 2.000       | 0.000 | 999.000   | 999.000    |
|              | ( ( 2) / 22)                   |                |       |     | W16ENJUN                 | 3.000       | 0.000 | 999.000   | 999.000    |
| Chi-Smar     | re Test of Model Fit           |                |       |     | W21ENJUN                 | 4.000       | 0.000 | 999.000   | 999.000    |
| CIII DQUUI   | ic lest of model lit           |                |       |     | W26ENJUN                 | 5.000       | 0.000 | 999.000   | 999.000    |
|              | Value                          | 68.063         |       | S   | WITH                     |             |       |           |            |
|              | Degrees of Freedom             | 16             |       |     | I                        | -0.116      | 0.050 | -2.300    | 0.021      |
|              | P-Value                        | 0.0000         |       |     |                          |             |       |           |            |
|              |                                |                |       | Mea |                          |             |       |           |            |
| RMSEA (Ro    | oot Mean Square Error Of Appro | oximation)     |       |     | I                        | 7.241       | 0.100 |           | 0.000      |
|              |                                |                |       |     | S                        | -0.145      | 0.022 | -6.442    | 0.000      |
|              | Estimate                       | 0.089          |       | Tn+ |                          |             |       |           |            |
|              | 90 Percent C.I.                | 0.068          | 0.111 |     | ercepts<br>W1ENJUN       | 0.000       | 0.000 | 999.000   | 999.000    |
|              | Probability RMSEA <= .05       | 0.002          |       |     | W1ENJUN<br>W6ENJUN       | 0.000       | 0.000 | 999.000   | 999.000    |
|              |                                |                |       |     | W11ENJUN                 | 0.000       | 0.000 | 999.000   | 999.000    |
| CFI/TLI      |                                |                |       |     | W16ENJUN                 | 0.000       | 0.000 | 999.000   | 999.000    |
|              |                                |                |       |     | W21ENJUN                 | 0.000       | 0.000 | 999.000   |            |
|              | CFI                            | 0.957          |       |     | W26ENJUN                 | 0.000       | 0.000 | 999.000   | 999.000    |
|              | TLI                            | 0.960          |       |     |                          |             |       |           |            |
|              |                                |                |       | Var | iances                   |             |       |           |            |
| Chi-Squar    | re Test of Model Fit for the H | Baseline Model |       |     | I                        | 2.948       | 0.289 | 10.192    | 0.000      |
|              |                                |                |       |     | S                        | 0.094       | 0.014 | 6.718     | 0.000      |
|              | Value                          | 1239.482       |       | Doo | idual Variano            |             |       |           |            |
|              | Degrees of Freedom             | 15             |       |     | iduai variano<br>W1ENJUN | es<br>1.872 | 0.208 | 9.019     | 0.000      |
|              | P-Value                        | 0.0000         |       |     | W1ENJUN<br>W6ENJUN       | 1.666       | 0.166 | 10.026    | 0.000      |
|              |                                |                |       |     | W11ENJUN                 | 2.363       | 0.166 | 10.949    | 0.000      |
| SRMR (Sta    | andardized Root Mean Square Re | esidual)       |       |     | W16ENJUN                 | 0.992       | 0.099 | 10.068    | 0.000      |
|              |                                |                |       |     | W21ENJUN                 | 0.871       | 0.105 | 8.273     | 0.000      |
|              | Value                          | 0.078          |       |     | W26ENJUN                 | 0.704       | 0.128 | 5.504     | 0.000      |

# **Example of a LGM with Five Time Points Adding a Quadratic Component**

```
USEVARIABLES ARE wlenjun w6enjun w11enjun w16enjun w21enjun w26enjun;
model:
I S Q| w1enjun@0 w6enjun@1 w11enjun@2 w16enjun@3 w21enjun@4 w26enjun@5;
plot:
type=plot3;
series = w1enjun(0) w6enjun(1) w11enjun(2) w16enjun(3) w21enjun(4) w26enjun(5);
output: sampstat residual stdyx tech4 modindices;
```



# **Example of a LGM with Five Time Points Adding a Quadratic Component**

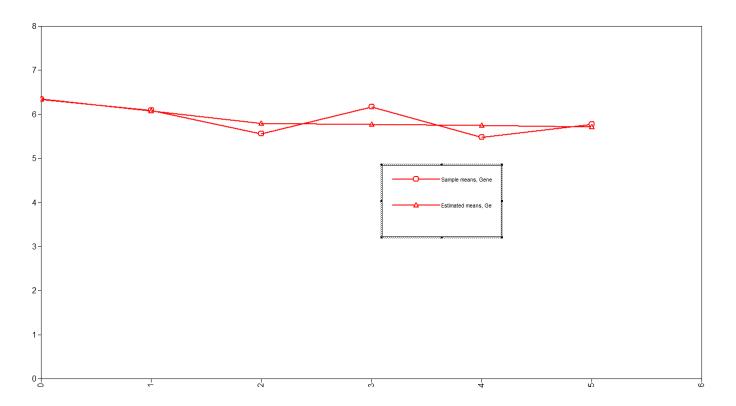



THE MODEL ESTIMATION TERMINATED NORMALLY

WARNING: THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT POSITIVE DEFINITE. THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR A LATENT VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO LATENT VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO LATENT VARIABLES. CHECK THE TECH4 OUTPUT FOR MORE INFORMATION. PROBLEM INVOLVING VARIABLE Q.

# Example of a LGM with Five Time Points Time Points Free

```
USEVARIABLES ARE w1enjun w6enjun w11enjun w16enjun w21enjun w26enjun;
model:
I S | w1enjun@0 w6enjun@1 w11enjun* w16enjun* w21enjun* w26enjun*5;
plot:
type=plot3;
series = w1enjun(0) w6enjun(1) w11enjun(2) w16enjun(3) w21enjun(4) w26enjun(5);
output: sampstat residual stdyx tech4 modindices;
```




# **Example of a LGM with Five Time Points Time Points Free**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       |            |                 |                |       |                    | Two-Tailed         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|------------|-----------------|----------------|-------|--------------------|--------------------|--|
| Number of Free Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15               |       |            |                 | Estimate       | S.E.  | Est./S.E.          | P-Value            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       | I          | 1               |                |       |                    |                    |  |
| Loglikelihood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |       | _          | ENJUN           | 1.000          | 0.000 | 999.000            | 999.000            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       |            | ENJUN           | 1.000          | 0.000 | 999.000            | 999.000            |  |
| HO Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3764.199        |       | W1:        | 1ENJUN          | 1.000          | 0.000 | 999.000            | 999.000            |  |
| H1 Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3745.014        |       | W1         | 6ENJUN          | 1.000          | 0.000 | 999.000            | 999.000            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       | W2:        | 1ENJUN          | 1.000          | 0.000 | 999.000            | 999.000            |  |
| Information Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |       | W2         | 6ENJUN          | 1.000          | 0.000 | 999.000            | 999.000            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       |            |                 |                |       |                    |                    |  |
| Akaike (AIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7558.398         |       | S          |                 |                |       |                    |                    |  |
| Bayesian (BIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7618.749         |       |            | ENJUN<br>ENJUN  | 0.000<br>1.000 | 0.000 | 999.000<br>999.000 | 999.000<br>999.000 |  |
| Sample-Size Adjusted BIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7571.151         |       |            | LNJUN<br>1ENJUN | 1.304          | 0.000 | 7.525              | 0.000              |  |
| (n* = (n + 2) / 24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70711101         |       |            | 6ENJUN          | 1.706          | 0.173 | 7.323              | 0.000              |  |
| (11 (11 - 2) / 21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |       |            | 1ENJUN          | 1.954          | 0.287 |                    | 0.000              |  |
| Chi-Square Test of Model Fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |       |            | 6ENJUN          | 2.013          | 0.289 | 6.965              | 0.000              |  |
| oni square rest or noder ris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |       |            |                 |                |       |                    |                    |  |
| Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.370           |       | S          | WITH            |                |       |                    |                    |  |
| Degrees of Freedom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12               |       | I          |                 | -0.687         | 0.288 | -2.383             | 0.017              |  |
| P-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001           |       | Means      |                 |                |       |                    |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       | Means<br>I |                 | 7.452          | 0.108 | 69.287             | 0.000              |  |
| RMSEA (Root Mean Square Error Of App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | proximation)     |       | S          |                 | -0.429         | 0.100 | -4.911             | 0.000              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       | _          |                 | 51123          |       |                    | 21.020             |  |
| Estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.073            |       | Inter      | cepts           |                |       |                    |                    |  |
| 90 Percent C.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.048            | 0.099 | W11        | ENJUN           | 0.000          | 0.000 | 999.000            | 999.000            |  |
| Probability RMSEA <= .05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.065            |       |            | ENJUN           | 0.000          | 0.000 | 999.000            | 999.000            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       |            | 1ENJUN          | 0.000          | 0.000 |                    | 999.000            |  |
| CFI/TLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |       |            | 6ENJUN          | 0.000          | 0.000 | 999.000            | 999.000            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       |            | 1ENJUN          | 0.000          | 0.000 | 999.000            | 999.000            |  |
| CFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.978            |       | W2         | 6ENJUN          | 0.000          | 0.000 | 999.000            | 999.000            |  |
| TLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.973            |       | Varia      | nces            |                |       |                    |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       | I          | 11000           | 3.523          | 0.444 | 7.928              | 0.000              |  |
| Chi-Square Test of Model Fit for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Baseline Model |       | 5          |                 | 0.723          | 0.291 | 2.481              | 0.013              |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |       |            |                 |                |       |                    |                    |  |
| Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1239.482         |       |            | ual Variano     |                |       |                    |                    |  |
| Degrees of Freedom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15               |       |            | ENJUN           | 0.935          | 0.374 | 2.500              | 0.012              |  |
| P-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000           |       |            | ENJUN           | 1.869          | 0.177 |                    | 0.000              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       |            | 1ENJUN          | 2.435          | 0.218 | 11.175             | 0.000              |  |
| SRMR (Standardized Root Mean Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Residual)        |       |            | 6ENJUN          | 0.939          | 0.101 |                    | 0.000              |  |
| , and a second of the secon |                  |       |            | 1ENJUN          | 0.774          | 0.111 | 6.946              | 0.000              |  |
| Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.030            |       | W2         | 6ENJUN          | 0.910          | 0.124 | 7.330              | 0.000              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000            |       |            |                 |                |       |                    |                    |  |

# Example of a LGM with Five Time Points Piecewise

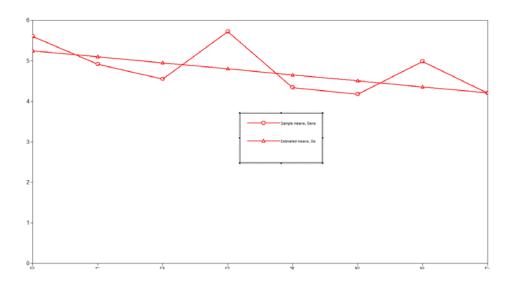
```
USEVARIABLES ARE wlenjcr w6enjcr w11enjcr w16enjcr w21enjcr w26enjcr;
model:
I S1 | w1enjcr@0 w6enjcr@1 w11enjcr@2 w16enjcr@2 w21enjcr@2 w26enjcr@2;
I S2 | w1enjcr@0 w6enjcr@0 w11enjcr@0 w16enjcr@1 w21enjcr@2 w26enjcr@3;
plot:
type=plot3;
series = w1enjcr(0) w6enjcr(1) w11enjcr(2) w16enjcr(3) w21enjcr(4) w26enjcr(5);
output: sampstat residual stdyx tech4 modindices;
```



# **Example of a LGM with Five Time Points Piecewise**

Poor model

| MODEL FIT  | INFORMATION                                    |                |       |
|------------|------------------------------------------------|----------------|-------|
| Number of  | Free Parameters                                | 15             |       |
| Loglikeli  | hood                                           |                |       |
|            | HO Value                                       | -4038.467      |       |
|            | H1 Value                                       | -3997.736      |       |
| Informatio | on Criteria                                    |                |       |
|            | Akaike (AIC)                                   | 8106.934       |       |
|            | Bayesian (BIC)                                 | 8167.249       |       |
|            | Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$ | 8119.651       |       |
| Chi-Square | e Test of Model Fit                            |                |       |
|            | Value                                          | 81.462         |       |
|            | Degrees of Freedom                             | 12             |       |
|            | P-Value                                        | 0.0000         |       |
| RMSEA (Ro  | ot Mean Square Error Of App:                   | roximation)    |       |
|            | Estimate                                       | 0.119          |       |
|            | 90 Percent C.I.                                | 0.095          | 0.144 |
|            | Probability RMSEA <= .05                       | 0.000          |       |
| CFI/TLI    |                                                |                |       |
|            | CFI                                            | 0.902          |       |
|            | TLI                                            | 0.877          |       |
| Chi-Square | e Test of Model Fit for the                    | Baseline Model |       |
|            | Value                                          | 722.674        |       |
|            | Degrees of Freedom                             | 15             |       |
|            | P-Value                                        | 0.0000         |       |
| SRMR (Star | ndardized Root Mean Square I                   | Residual)      |       |
|            | Value                                          | 0.074          |       |


#### **Power in LGM**

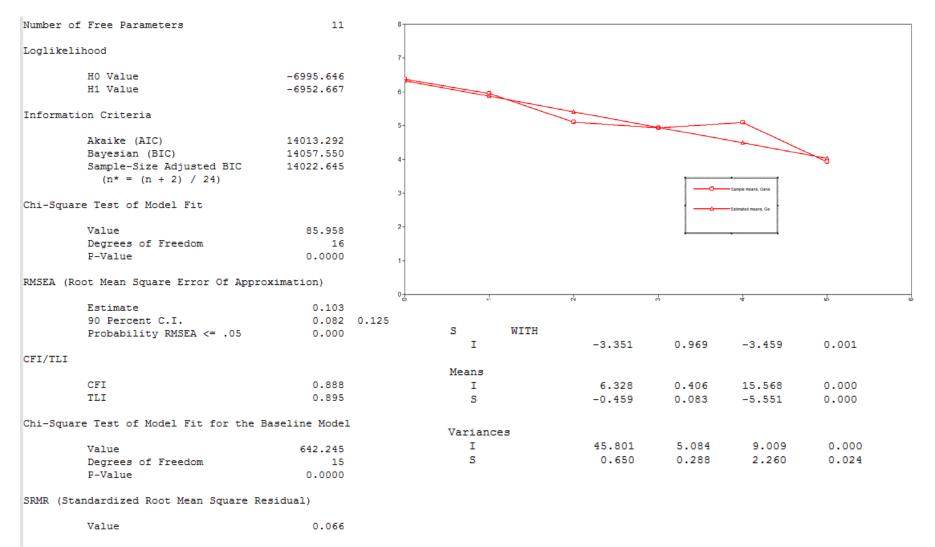
- Fan (2003) showed that LGM consistently showed higher statistical power for detecting group differences in the linear growth slope than repeated measures ANOVA.
- Study done with five time points
- More research needed on the impact of number of time points

Fan, X. (2003). Power of latent growth modeling for detecting group differences in linear growth trajectory parameters. *Structural Equation Modeling: A Multidisciplinary Journal*, *10*, 380-400.

## **Alternative Ways of Scaling Slope: Drinking Example (8 time points)**

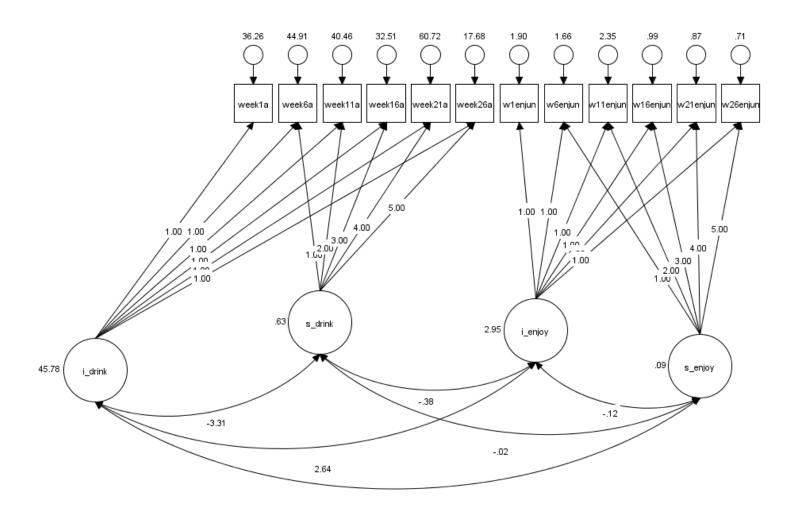
| MODEL FIT                               | INFORMATION                                    |             |       |
|-----------------------------------------|------------------------------------------------|-------------|-------|
| Number of                               | Free Parameters                                | 13          |       |
| Loglikelih                              | nood                                           |             |       |
|                                         | HO Value                                       | -7809.924   |       |
|                                         | H1 Value                                       | -7736.326   |       |
| Informatio                              | on Criteria                                    |             |       |
|                                         | Akaike (AIC)                                   | 15645.849   |       |
|                                         | Bayesian (BIC)                                 | 15695.927   |       |
|                                         | Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$ | 15654.687   |       |
| Chi-Square                              | e Test of Model Fit                            |             |       |
|                                         | Value                                          | 147.197     |       |
|                                         | Degrees of Freedom                             | 31          |       |
|                                         | P-Value                                        | 0.0000      |       |
| RMSEA (Roo                              | ot Mean Square Error Of Approxim               | mation)     |       |
|                                         | Estimate                                       | 0.104       |       |
|                                         | 90 Percent C.I.                                | 0.087       | 0.121 |
|                                         | Probability RMSEA <= .05                       | 0.000       |       |
| CFI/TLI                                 |                                                |             |       |
|                                         | CFI                                            | 0.942       |       |
|                                         | TLI                                            | 0.948       |       |
| Chi-Square                              | e Test of Model Fit for the Base               | eline Model |       |
|                                         | Value                                          | 2027.634    |       |
|                                         | Degrees of Freedom                             | 28          |       |
|                                         | P-Value                                        | 0.0000      |       |
| SRMR (Star                              | ndardized Root Mean Square Resid               | dual)       |       |
| 200000000000000000000000000000000000000 | Value                                          | 0.059       |       |




## **Alternative Ways of Scaling Slope: Drinking Example (8 time points)**

usevariables are d1 d2 d3 d4 d5 d6 d7 d8; model: i s | d1@0 d2@0.143 d3@0.286 d4@0.429 d5@0.572 d6@0.715 d7@0.858 d8@1; S WITH Ι -13.709 2.624 -5.225 0.000 Means I 5.246 0.351 14.941 0.000 S -1.038 0.348 -2.978 0.003 Variances 36.513 I 3.251 11.230 0.000 S 24.601 3.386 7.266 0.000

| usevaria  | bles are d1 d2 d3 d4 | d5 d6 d7    | d8;         |       | usevariab | les are d1 | . d2 d3 d4 d5 | d6 d7 d8;  | ;           |            |
|-----------|----------------------|-------------|-------------|-------|-----------|------------|---------------|------------|-------------|------------|
| model: i  | . s   d1@0 d2@1 d3@2 | d4@3 d5@4 ( | d605 d706 d | 807;  | model: i  | s   d10-7  | d2@-6 d3@-5   | d40-4 d50- | -3 d6@-2 d7 | '@-1 d8@0; |
| S         | WITH                 |             |             |       |           |            |               |            |             |            |
| I         | -1.959               | 0.375       | -5.225      | 0.000 | S         | WITH       |               |            |             |            |
|           |                      |             |             |       | I         |            | 1.557         | 0.359      | 4.332       | 0.000      |
| Means     |                      |             |             |       |           |            |               |            |             |            |
| I         | 5.245                | 0.351       | 14.941      | 0.000 | Means     |            |               |            |             |            |
| S         | -0.148               | 0.050       | -2.978      | 0.003 | I         |            | 4.208         | 0.340      | 12.385      | 0.000      |
|           |                      |             |             |       | S         |            | -0.148        | 0.050      | -2.978      | 0.003      |
| Variances | 3                    |             |             |       |           |            |               |            |             |            |
| I         | 36.511               | 3.251       | 11.230      | 0.000 | TT        |            |               |            |             |            |
| S         | 0.502                | 0.069       | 7.266       | 0.000 | Varia     | nces       |               |            |             |            |
| 3         | 0.302                | 0.005       | 7.200       | 5.000 | I         |            | 33.698        | 3.047      | 11.060      | 0.000      |
|           |                      |             |             |       | S         |            | 0.502         | 0.069      | 7.266       | 0.000      |


### **Associative LGM (i.e., Trajectory of Two Different Variables)**

I will investigate whether the slope in enjoying courses is associated with the slope in drinking. Here is a LGM of drinking only:



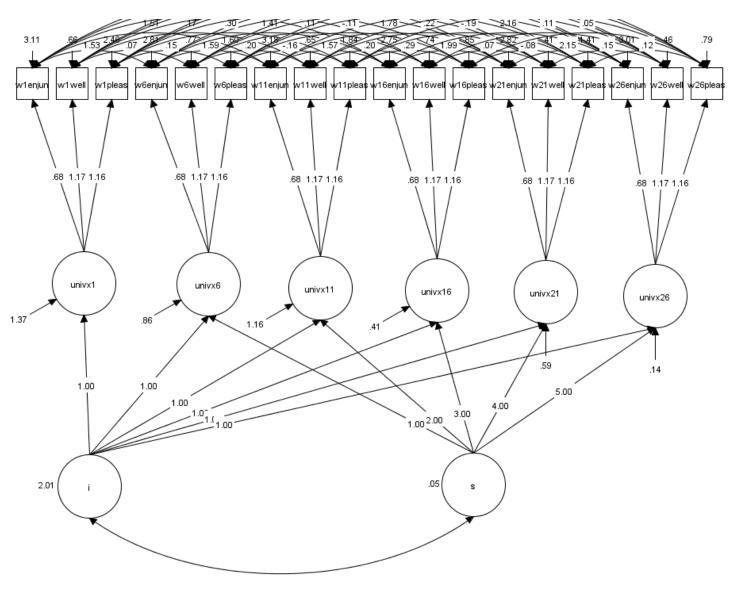
### **Associative LGM (i.e., Trajectory of Two Different Variables)**

```
USEVARIABLES ARE week1a week6a week11a week16a week21a week26a
wlenjun w6enjun w11enjun w16enjun w21enjun w26enjun;
model:
I_drink S_drink | week1a@0 week6a@1 week11a@2 week16a@3 week21a@4 week26a@5;
I_enjoy S_enjoy | w1enjun@0 w6enjun@1 w11enjun@2 w16enjun@3 w21enjun@4 w26enjun@5;
output: sampstat residual stdyx tech4 modindices;
```



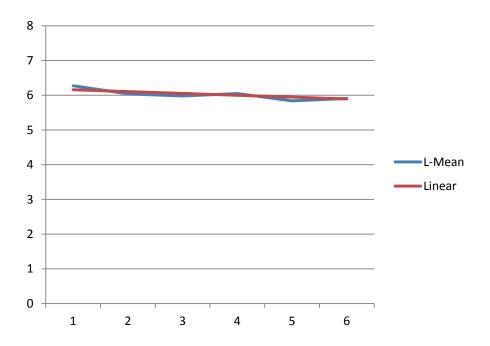
## **Associative LGM (i.e., Trajectory of Two Different Variables)**

| Loglikelihood                        |                |              |        |       |        |       |
|--------------------------------------|----------------|--------------|--------|-------|--------|-------|
| HO Value                             | -10767.889     |              |        |       |        |       |
| H1 Value                             | -10665.836     | Means        |        |       |        |       |
|                                      |                | I DRINK      | 6.309  | 0.407 | 15.514 | 0.000 |
| Information Criteria                 |                | S DRINK      | -0.454 | 0.083 | -5.485 | 0.000 |
|                                      |                | I ENJOY      | 7.240  | 0.100 | 72.342 | 0.000 |
| Akaike (AIC)                         | 21587.778      | S ENJOY      | -0.144 | 0.022 | -6.408 | 0.000 |
| Bayesian (BIC)                       | 21692.388      | _            |        |       |        |       |
| Sample-Size Adjusted BIC             | 21609.884      |              |        |       |        |       |
| (n* = (n + 2) / 24)                  |                | Variances    |        |       |        |       |
|                                      |                | I_DRINK      | 45.779 | 5.085 | 9.003  | 0.000 |
| Chi-Square Test of Model Fit         |                | S_DRINK      | 0.631  | 0.287 | 2.201  | 0.028 |
|                                      |                | I ENJOY      | 2.949  | 0.290 | 10.181 | 0.000 |
| Value                                | 204.105        | S ENJOY      | 0.093  | 0.014 | 6.705  | 0.000 |
| Degrees of Freedom                   | 64             | _            |        |       |        |       |
| P-Value                              | 0.0000         |              |        |       |        |       |
| RMSEA (Root Mean Square Error Of App | roximation)    | S DRINK WITH |        |       |        |       |
|                                      |                | - I DRINK    | -0.616 | 0.090 | -6.833 | 0.000 |
| Estimate                             | 0.073          |              |        |       |        |       |
| 90 Percent C.I.                      | 0.062 0.084    | I ENJOY WITH |        |       |        |       |
| Probability RMSEA <= .05             | 0.000          | I DRINK      | 0.228  | 0.069 | 3.307  | 0.001 |
|                                      |                | S DRINK      | -0.277 |       |        | 0.038 |
| CFI/TLI                              |                | 5_51.21111   | 312.,  | 5.155 | 2.0.0  | 3.333 |
| CET                                  | 0.925          | S_ENJOY WITH |        |       |        |       |
| CFI<br>TLI                           | 0.925          | I DRINK      | -0.013 | 0.089 | -0.145 | 0.884 |
| 111                                  | 0.923          | S DRINK      | -0.087 | 0.146 | -0.599 | 0.549 |
| Chi-Square Test of Model Fit for the | Baseline Model | I_ENJOY      | -0.220 | 0.081 | -2.701 | 0.007 |
| Value                                | 1945.417       |              |        |       |        |       |
| Degrees of Freedom                   | 66             |              |        |       |        |       |
| P-Value                              | 0.0000         |              |        |       |        |       |
| SRMR (Standardized Root Mean Square  | Residual)      |              |        |       |        |       |
| Value                                | 0.066          |              |        |       |        |       |
| 10200                                | 0.000          |              |        |       |        |       |


#### **One Trajectory with Time Varying Covariates**

I will investigate the previous trajectory of drinking and add time varying covariates of Enjoyed University. Recall that in the previous example, Enjoyed University was modelled as a separate trajectory. In the present example, I ignore the growth factor of Enjoyed University.

```
model:
I_drink S_drink | week1a@0 week6a@1 week11a@2 week16a@3 week21a@4 week26a@5;
week1a on w1enjun;
week6a on w6enjun;
week11a on w11enjun;
week16a on w16enjun;
week21a on w21enjun;
week26a on w26enjun;
I_drink S_drink with w1enjun w6enjun w11enjun w16enjun w21enjun w26enjun;
output: sampstat residual stdyx tech4 modindices;
```

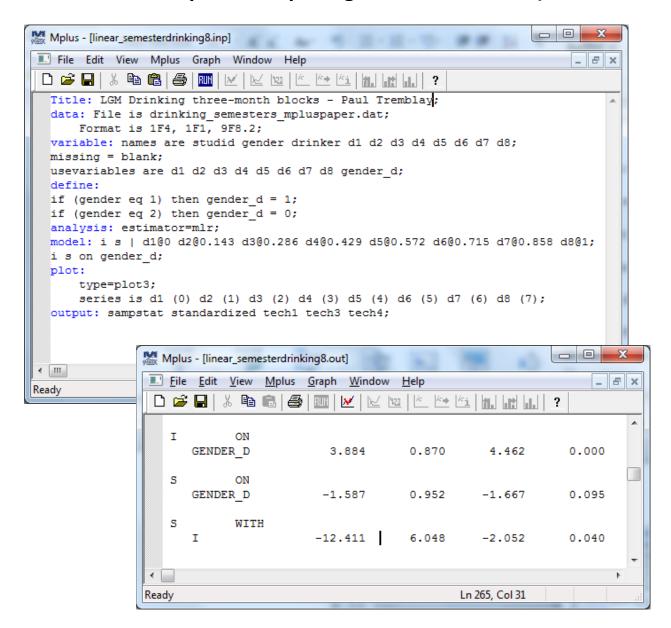

## **One Trajectory with Time Varying Covariates**

| Number o                                | f Free Parameters             | 56             |              |             |         |        |       |
|-----------------------------------------|-------------------------------|----------------|--------------|-------------|---------|--------|-------|
| Loglikel                                | ihood                         |                | Not          | a good m    | nodel;  |        |       |
| 000000000000000000000000000000000000000 | HO Value                      | -10728.518     | COV          | ariate do i | not add | much   |       |
| 000000000000000000000000000000000000000 | H1 Value                      | -10665.836     | COV          |             | not ada | mach   |       |
| Informat                                | ion Criteria                  |                |              |             |         |        |       |
|                                         |                               |                | WEEK1A ON    |             |         |        |       |
|                                         | Akaike (AIC)                  | 21569.035      | W1ENJUN      | 0.151       | 0.225   | 0.671  | 0.502 |
| 00                                      | Bayesian (BIC)                | 21794.348      |              |             |         |        |       |
|                                         | Sample-Size Adjusted BIC      | 21616.648      | WEEK6A ON    |             |         |        |       |
| 000000000000000000000000000000000000000 | (n* = (n + 2) / 24)           |                | W6ENJUN      | 0.228       | 0.179   | 1.274  | 0.203 |
| Chi-Smua                                | re Test of Model Fit          |                | WEEK11A ON   |             |         |        |       |
| oni bquu                                | re rebo or moder rro          |                | W11ENJUN     | 0.145       | 0.159   | 0.914  | 0.361 |
|                                         | Value                         | 125.363        |              |             |         |        |       |
|                                         | Degrees of Freedom            | 34             | WEEK16A ON   |             |         |        |       |
|                                         | P-Value                       | 0.0000         | W16ENJUN     | 0.265       | 0.182   | 1.457  | 0.145 |
| RMSEA (R                                | oot Mean Square Error Of App: | roximation)    | WEEK21A ON   |             |         |        |       |
| 1410211 (10                             | ood nean bquare brior or npp. |                | W21ENJUN     | 0.336       | 0.255   | 1.320  | 0.187 |
|                                         | Estimate                      | 0.081          |              |             |         |        |       |
|                                         | 90 Percent C.I.               | 0.066 0.096    | WEEK26A ON   |             |         |        |       |
| 000000000000000000000000000000000000000 | Probability RMSEA <= .05      | 0.000          | W26ENJUN     | 0.285       | 0.327   | 0.874  | 0.382 |
| CFI/TLI                                 |                               |                | I DRINK WITH |             |         |        |       |
| 011,111                                 |                               |                | W1ENJUN      | 1.101       | 1.223   | 0.900  | 0.368 |
|                                         | CFI                           | 0.861          | W6ENJUN      | 2.469       | 1.193   | 2.069  | 0.039 |
|                                         | TLI                           | 0.791          | W11ENJUN     | 2.848       | 1.265   | 2.251  | 0.024 |
|                                         |                               | 377.22         | W16ENJUN     | 2.331       | 1.122   | 2.079  | 0.038 |
| Chi-Squa                                | re Test of Model Fit for the  | Baseline Model | W21ENJUN     | 2.411       | 1.083   | 2.227  | 0.026 |
|                                         |                               |                | W26ENJUN     | 1.830       | 1.154   | 1.587  | 0.113 |
|                                         | Value                         | 705.935        |              |             |         |        |       |
|                                         | Degrees of Freedom            | 51             | S DRINK WITH |             |         |        |       |
|                                         | P-Value                       | 0.0000         | W1ENJUN      | -0.282      | 0.324   | -0.872 | 0.383 |
|                                         |                               |                | W6ENJUN      | -0.540      | 0.337   | -1.602 | 0.109 |
| SRMR (St                                | andardized Root Mean Square I | Residual)      | W11ENJUN     | -0.541      | 0.333   | -1.624 | 0.104 |
| •                                       |                               | •              | W16ENJUN     | -0.599      | 0.364   |        | 0.099 |
| S0000000000000000000000000000000000000  | Value                         | 0.045          | W21ENJUN     | -0.654      | 0.358   | -1.829 | 0.067 |
| V0000000000000000000000000000000000000  |                               |                | W26ENJUN     | -0.666      | 0.412   | -1.619 | 0.106 |
| V0                                      |                               |                | I DRINK      | -3.332      | 1.000   | -3.332 | 0.001 |
| 5                                       |                               |                |              | 2.002       |         | 2.002  | 2.001 |



#### Steps:

- Allow residuals of indicators to correlate across time
- Test for strong invariance (loadings and intercepts across time points)
- Constrain loadings and intercepts to equality across time points
- Fix intercepts of the level-1 factors (i.e., univx1 univx2...in this example) at 0
- In Mplus, the intercept growth factor is fixed at 0; free this parameter



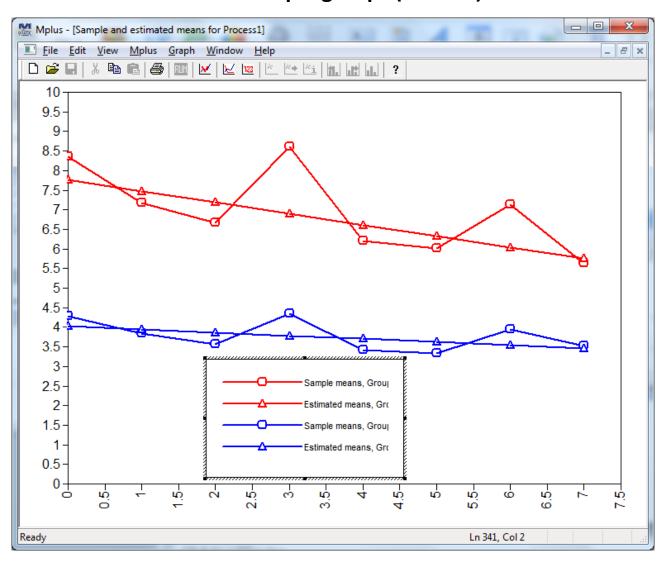

```
MODEL:
univx1 by wlenjun* (L1)
w1well (L2)
w1pleas (L3);
univx6 by w6enjun* (L1)
w6well (L2)
w6pleas (L3);
univx11 by w11enjun* (L1)
w11well (L2)
w11pleas (L3);
univx16 by w16enjun* (L1)
w16well (L2)
w16pleas (L3);
univx21 by w21enjun* (L1)
w21well (L2)
w21pleas (L3);
univx26 by w26enjun* (L1)
w26well (L2)
w26pleas (L3);
[w1enjun] (T1);
[w1well] (T2);
[w1pleas] (T3);
[w6enjun] (T1);
[w6well] (T2);
[w6pleas] (T3);
[w11enjun] (T1);
[w11well] (T2);
[w11pleas] (T3);
[w16enjun] (T1);
[w16well] (T2);
[w16pleas] (T3);
[w21enjun] (T1);
[w21well] (T2);
[w21pleas] (T3);
[w26enjun] (T1);
[w26well] (T2);
[w26pleas] (T3);
```

```
w1pleas with w6pleas w11pleas w16pleas w21pleas w26pleas;
w6pleas with w11pleas w16pleas w21pleas w26pleas;
w11pleas with w16pleas w21pleas w26pleas;
w16pleas with w21pleas w26pleas;
w21pleas with w26pleas;
w1well with w6well w11well w16well w21well w26well;
w6well with w11well w16well w21well w26well:
w11well with w16well w21well w26well;
w16well with w21well w26well;
w21well with w26well;
wlenjun with w6enjun w11enjun w16enjun w21enjun w26enjun;
w6enjun with w11enjun w16enjun w21enjun w26enjun;
w11enjun with w16enjun w21enjun w26enjun;
w16enjun with w21enjun w26enjun;
w21enjun with w26enjun;
![univx1 univx6 univx11 univx16 univx21 univx26];
I S | univx100 univx601 univx1102 univx1603 univx2104 univx2605;
[I];
MODEL CONSTRAINT: L1 = 3 - L2 - L3;
T1 = 0 - T2 - T3;
output: sampstat residual stdyx tech4 modindices (5);
```

| Loglikelihood  H0 Value -10821.321 H1 Value -10686.827             |
|--------------------------------------------------------------------|
| H1 Value -10686.827                                                |
|                                                                    |
| Information Criteria S WITH                                        |
| I -0.003 0.033 -0.077 0.93                                         |
| Akaike (AIC) 21798.643                                             |
| Bayesian (BIC) 22112.472 Means                                     |
| Sample-Size Adjusted BIC 21864.960 I 6.158 0.087 71.160 0.00       |
| (n* = (n + 2) / 24) S $-0.053$ 0.018 $-2.998$ 0.003                |
| Chi-Square Test of Model Fit                                       |
| Variances                                                          |
| Value 268.989 I 1.986 0.210 9.454 0.00                             |
| Degrees of Freedom 111 S 0.053 0.010 5.249 0.00                    |
| P-Value 0.0000                                                     |
| RMSEA (Root Mean Square Error Of Approximation) Residual Variances |
| ***************************************                            |
| Estimate 0.059 UNIVX1 1.444 0.183 7.909 0.000                      |
| 90 Percent C.I. 0.050 0.068 UNIVX6 0.878 0.120 7.297 0.000         |
| Probability RMSEA <= .05 0.054 UNIVX11 1.171 0.138 8.512 0.000     |
| UNIVX16 0.421 0.070 5.994 0.000                                    |
| CFI/TLI UNIVX21 0.644 0.089 7.209 0.000                            |
| UNIVX26 0.148 0.080 1.846 0.065                                    |
| CFI 0.970                                                          |
| TLI 0.959                                                          |
| Chi-Square Test of Model Fit for the Baseline Model                |
| Value 5487.539                                                     |
| Degrees of Freedom 153                                             |
| P-Value 0.0000                                                     |
| SRMR (Standardized Root Mean Square Residual)                      |
| Value 0.076                                                        |

### LGM with Intercept and Slope Regressed on Gender (Time Invariant Covariate)




### **LGM Multiple groups (Gender)**

```
Mplus - [linear_semesterdrinking6.inp]
File Edit View Mplus Graph Window Help
                                                                             8 X
 Title: Drinking three-month blocks Paul Tremblay;
  data: File is c:\paul\mplus\may10\drinking semesters mpluspaper.dat;
      Format is 1F4, 1F1, 9F8.2;
  variable: names are studid gender drinker d1 d2 d3 d4 d5 d6 d7 d8;
  missing = blank;
  usevariables are d1 d2 d3 d4 d5 d6 d7 d8;
  grouping is gender (1=male 2=female);
  analysis:
  estimator = mlr;
  model: i s | d1@0 d2@0.143 d3@0.286 d4@0.429 d5@0.572 d6@0.715 d7@0.858 d8@1;
  plot:
      type=plot3;
      series is d1 (0) d2 (1) d3 (2) d4 (3) d5 (4) d6 (5) d7 (6) d8 (7);
  output: sampstat stdyx tech1 tech3 tech4 modindices;
.III.
                                                       Ln 4, Col 57
Ready
```

# **LGM Multiple groups (Gender)**

| Mplus - [linear_semester | drinking6.out]                            |                   |               | _ D X      |
|--------------------------|-------------------------------------------|-------------------|---------------|------------|
| <u>File Edit View Mp</u> | us <u>G</u> raph <u>W</u> indow           | <u>H</u> elp      |               | _ & ×      |
|                          | <b>∌</b>   <b>™</b>   <b>⊻</b>   <b>⊵</b> | 123   1/4   1/4 → |               | ?          |
| MODEL RESULTS            |                                           |                   |               | ^          |
|                          |                                           |                   |               | Two-Tailed |
|                          | Estimate                                  | S.E.              | Est./S.E.     |            |
| Group MALE               |                                           |                   |               |            |
| Means                    |                                           |                   |               |            |
| I                        | 7.764                                     | 0.805             | 9.647         | 0.000      |
| S                        | -2.011                                    | 0.888             | -2.265        | 0.024      |
| Variances                |                                           |                   |               |            |
| I                        | 61.958                                    | 16.424            | 3.772         | 0.000      |
| S                        | 52.528                                    | 19.285            | 2.724         | 0.006      |
| Group FEMALE             |                                           |                   |               |            |
| Means                    |                                           |                   |               |            |
| I                        | 4.029                                     | 0.312             | 12.909        | 0.000      |
| 5                        | -0.569                                    | 0.290             | -1.961        | 0.050      |
| Variances                |                                           |                   |               |            |
| I                        | 18.580                                    | 2.549             |               | 0.000      |
| 5                        | 10.387                                    | 2.640             | 3.935         | 0.000      |
| <b>▼</b>                 |                                           |                   |               | <b>+</b>   |
| Ready                    |                                           |                   | Ln 341, Col 2 |            |

## LGM Multiple groups (Gender)



#### **Measures within Persons**

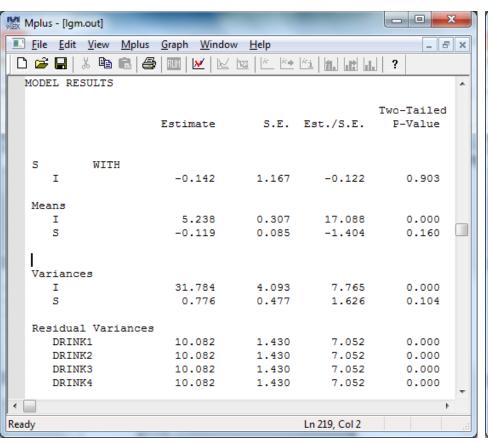
```
Title: PSY9555 Regression examples;
!note that two outliers of 0 were removed in average;
data: File is sem mplus2.dat;
    Format is 1F4, 1F1, 1F2, 23F8.2, 1F11.3, 72F8.2;
data widetolong: <
wide = drink1 drink2 drink3 drink4:
long = drink:
idvariable = person;
repetition = time;
variable: names are studid gender age
bppa bpv bpa bph bptot
sq1 sq2 sq3 sq4 sq5 sq6 sq7 sq8 sq9 sq10 sq11 sq12 sq13 sq14 sq15
es es pt es fin grade
drink1 drink2 drink3 drink4 epis1 epis2 epis3 epis4
stress1 stress2 stress3 stress4 pleased1 pleased2 pleased3 pleased4
enjoyc1 enjoyc2 enjoyc3 enjoyc4 enjoyu1 enjoyu2 enjoyu3 enjoyu4
effort1 effort2 effort3 effort4 harm1 harm2 harm3 harm4 dep1 dep2 dep3 dep4
drink1b drink2b drink3b drink4b epis1b epis2b epis3b epis4b
stress1b stress2b stress3b stress4b please1b please2b please3b please4b
enjoyc1b enjoyc2b enjoyc3b enjoyc4b enjoyu1b enjoyu2b enjoyu3b enjoyu4b
effort1b effort2b effort3b effort4b harm1b harm2b harm3b harm4b
dep1b dep2b dep3b dep4b;
missing = blank;
usevariables are drink person time;
cluster = person;
within = time:
analysis:
type = twolevel random;
model:
%within%
s | drink on time;
%between%
s with drink:
output: sampstat tech1;
```

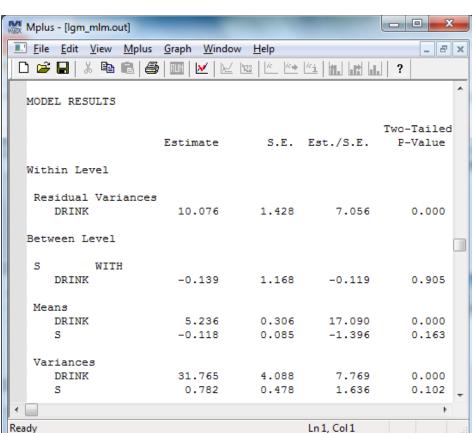
When your data file is structured in the conventional one line per subject with repeated measures on the same line

## **Measures within Persons**

| Loglikelihood                                |                 |                |                                  |                       |                                                   |     |
|----------------------------------------------|-----------------|----------------|----------------------------------|-----------------------|---------------------------------------------------|-----|
| HO Value<br>HO Scalin<br>for MLR             | g Correction    |                | -4756.126<br>3.5791              |                       | Time 10.076                                       |     |
| Information Criteri                          | a               |                |                                  |                       | (linear) Slope                                    |     |
|                                              |                 |                | 9524.253<br>9556.568<br>9537.507 |                       | Drink                                             |     |
| MODEL RESULTS                                | Estimate        | S.E.           | Est./S.E.                        | Two-Tailed<br>P-Value | WITHIN                                            |     |
| Within Level                                 |                 |                |                                  |                       | BETWEEN                                           |     |
| Residual Variances<br>DRINK<br>Between Level |                 | 1.428          | 7.056                            | 0.000                 | Mean = 5.236<br>Var = 31.765 Drink<br>(intercept) | 1   |
| S WITH<br>DRINK                              | -0.139          | 1.168          | -0.119                           | 0.905                 | -0.1                                              | .39 |
| Means<br>DRINK<br>S                          |                 | 0.306<br>0.085 | 17.090<br>-1.396                 | 0.000<br>0.163        | Mean =118                                         |     |
| Variances<br>DRINK<br>S                      | 31.765<br>0.782 | 4.088<br>0.478 | 7.769<br>1.636                   | 0.000<br>0.102        | Var = .782 Slope                                  |     |

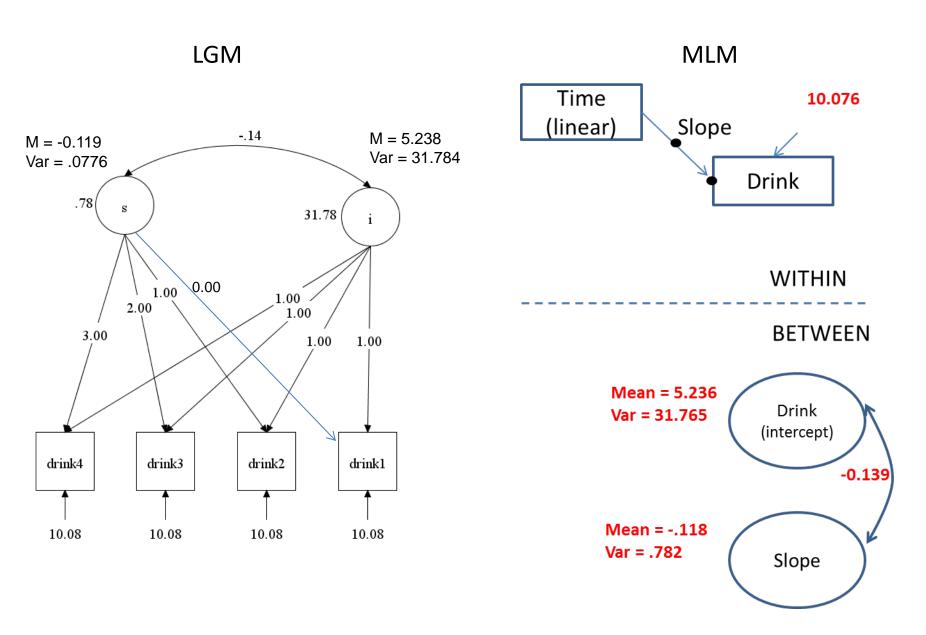
### Measures within Persons (Previous Model specified as LGM)


```
Title: PSY9555 Regression examples;
!note that two outliers of 0 were removed in average;
data: File is sem mplus2.dat;
    Format is 1F4, 1F1, 1F2, 23F8.2, 1F11.3, 72F8.2;
!LISTWISE = ON:
variable: names are studid gender age
bppa bpv bpa bph bptot
sq1 sq2 sq3 sq4 sq5 sq6 sq7 sq8 sq9 sq10 sq11 sq12 sq13 sq14 <del>sq1</del>5
es es pt es fin grade
drink1 drink2 drink3 drink4 epis1 epis2 epis3 epis4
stress1 stress2 stress3 stress4 pleased1 pleased2 pleased3 pleased4
enjoyc1 enjoyc2 enjoyc3 enjoyc4 enjoyu1 enjoyu2 enjoyu3 enjoyu4
effort1 effort2 effort3 effort4 harm1 harm2 harm3 harm4 dep1 dep2 dep3 dep4
drink1b drink2b drink3b drink4b epis1b epis2b epis3b epis4b
stress1b stress2b stress3b stress4b please1b please2b please3b please4b
enjoyc1b enjoyc2b enjoyc3b enjoyc4b enjoyu1b enjoyu2b enjoyu3b enjoyu4b
effort1b effort2b effort3b effort4b harm1b harm2b harm3b harm4b
dep1b dep2b dep3b dep4b;
missing = blank;
usevariables are drink1 drink2 drink3 drink4;
analysis:
type = general;
estimator = mlr;
I S | drink1@0 drink2@1 drink3@2 drink4@3;
drink1-drink4 (1); \leftarrow
plot:
type is plot3;
series = drink1 (0) drink2 (1) drink3 (2) drink4 (3);
output: sampstat residual stdyx tech4 modindices;
```


Back to the conventional data structure specification

IN LGM these residuals are usually not constrained to equality but they are in MLM. I constrained them here.

#### **Example: Measures within Persons (LGM and MLM)**


LGM MLM





Same as in slide 13

## **Example: Measures within Persons (LGM and MLM)**



## **Example: Measures within Persons (LGM and MLM)**

LGM MLM

| MODEL FIT | INFORMATION                          |           | MODEL FIT INFORMATION                |           |
|-----------|--------------------------------------|-----------|--------------------------------------|-----------|
| Number of | Free Parameters                      | 6         | Number of Free Parameters            | 6         |
| Loglikeli | hood                                 |           | Loglikelihood                        |           |
|           | HO Value                             | -4756.126 | HO Value                             | -4756.126 |
|           | HO Scaling Correction Factor for MLR | 3.5794    | HO Scaling Correction Factor for MLR | 3.5791    |
|           | H1 Value                             | -4731.180 |                                      |           |
|           | H1 Scaling Correction Factor for MLR | 3.6974    | Information Criteria                 |           |
|           |                                      |           | Akaike (AIC)                         | 9524.253  |
| Informati | on Criteria                          |           | Bayesian (BIC)                       | 9556.568  |
|           |                                      |           | Sample-Size Adjusted BIC             | 9537.507  |
|           | Akaike (AIC)                         | 9524.252  | (n* = (n + 2) / 24)                  |           |
|           | Bayesian (BIC)                       | 9548.407  |                                      |           |
|           | Sample-Size Adjusted BIC             | 9529.368  |                                      |           |
|           | (n* = (n + 2) / 24)                  |           |                                      |           |
| Chi-Squar | e Test of Model Fit                  |           |                                      |           |

13.178\*

0.1059

3.7860

8

Value

P-Value

for MLR

Degrees of Freedom

Scaling Correction Factor