PSY 9556B (Feb 12) Growth Mixture Modeling

Let's start with a brief introduction to other "clustering" techniques

- Imagine a data file that you would to conduct an exploratory factor analysis (EFA)
 - The data has variables in columns and subjects in rows
 - The objective is to find a set of factors to explain the variables
- It is possible to transpose the data file so that the variables are in rows and subjects in columns
 - You could now perform an EFA of subjects to determine if people fall into categories/prototypes/classes/types /clusters/profiles
 - This procedure is referred to as Q-technique (see Little, p. 227-228)
- A somewhat similar procedure is cluster analysis
- An alternative procedure is profile analysis using the multivariate approach to repeated measures (see chapter in Tabachnick and Fidell)
- These techniques aim to identify meaningful groups of subjects similar on the variables of interest

An Example of Profiles from a Latent Class Analysis

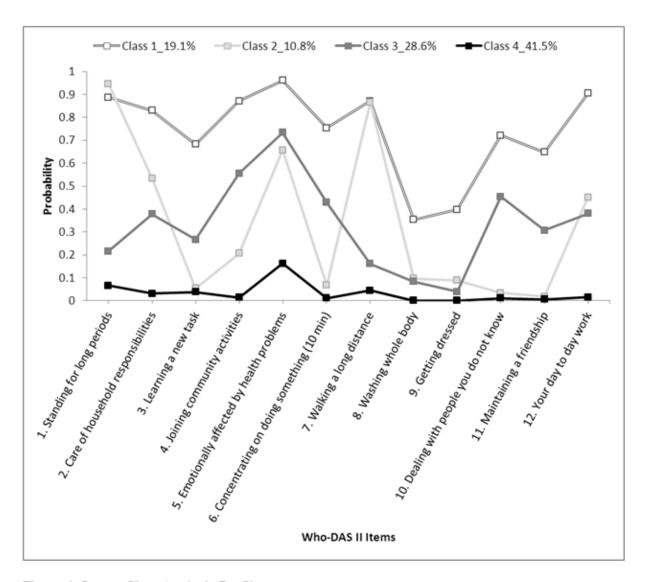
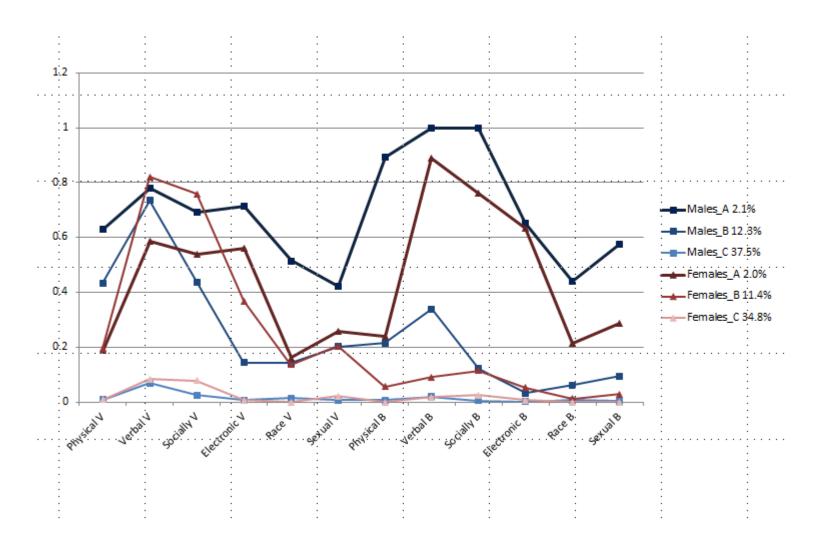



Figure 1. Latent Class Analysis Profiles

Another Latent Class Analysis

Another Latent Class Analysis

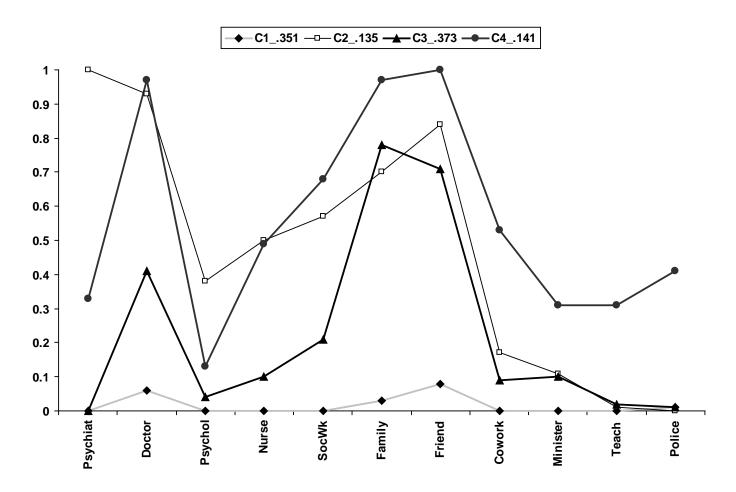


Figure 4. Classes obtained from Latent class analysis. Proportions indicated in legend above. Responses refer to "problems with your emotions, mental health, use of alcohol or drugs, or experiences of violence?" These classes could be labeled as (1) No Use of Services (2) Psychiatrist/Doctor/Friend/Family/Social Worker (3) Friend/Family (4) Friend/Family/Doctor/Coworker/Nurse.

Alternative Way of Plotting Results

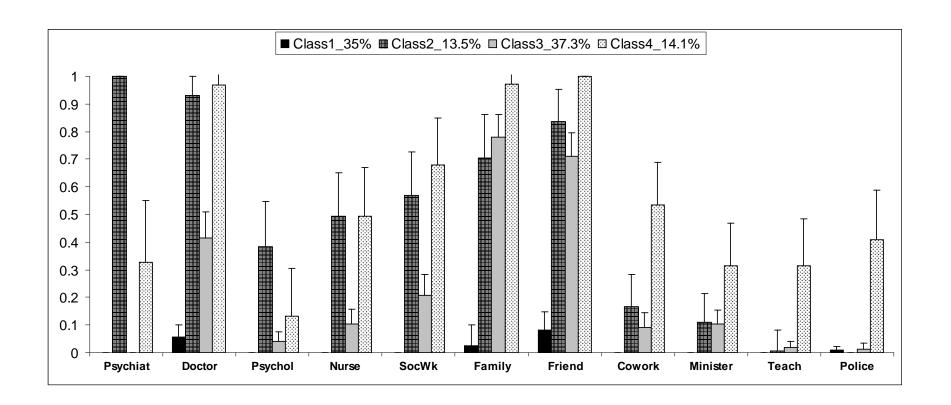
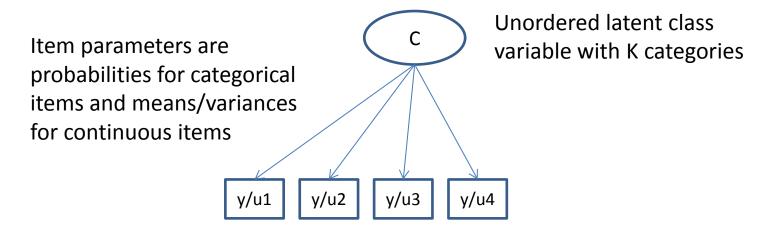



Figure 4. Classes obtained from Latent class analysis. Proportions indicated in legend above. Responses refer to "problems with your emotions, mental health, use of alcohol or drugs, or experiences of violence?" These classes could be labeled as (1) No Use of Services (2) Psychiatrist/Doctor/Friend/Family/Social Worker (3) Friend/Family (4) Friend/Family/Doctor/Coworker/Nurse.

Latent Class Analysis

- LCA uses a modelling approach to derive the classes (categorical items)
- Latent profile analysis (continuous items)
- A specific number of classes tested in steps
 - Start with one class and see if model improves in fit by adding a second class

$$P = \frac{1}{1 + e^{-\tau}}$$

threshold to probability

LCA – Deciding on Number of Classes (applies also to GMM)

- The number of classes to model is determined by comparing models differing in number of classes
- The chi-square difference test based on the likelihood ratio not appropriate for LCA
- An approximation by Lo, Mendell, and Rubin (2001) has been proposed
- Mplus program provides bootstrap likelihood ratio test (BLTR) as a test to compare the increase in model fit by adding a class.
- Can also use Akaike's Information Criterion (AIC; Akaike, 1987) and the Bayesian Information Criterion (BIC; Schwartz, 1978)
- Entropy, indicates the precision of classification (Magidson & Vermunt, 2002)
- Theory
- Number of individual in classes

LCA – Reporting Analyses for Selection of Number of Classes

Table 3. LCA Analyses

<u> </u>		N.	Jumber of Class	ec	
Fit Index and Classification Indices	1	2	3	4	5
Loglikelihood	-2948.022	-2385.174	-2294.951	-2248.947	-2217.669
AIC	5920.045	4820.348	4665.901	4599.893	4563.338
Adj. BIC	5931.192	4843.572	4701.202	4647.271	4622.792
Lo-Mendell-Rubin LRT p-value		1111.684 p = .0000	178.200 p = .0028	90.863 p = .0516	61.776 p = .1006
Bootstrapped LRT p-value		1125.696 p = .000	180.447 p = .000	92.008 p = .000	62.555 p = .000
Entropy		0.876	0.826	0.846	.850
Number of people in each category		190, 247	87, 162, 198	86, 48, 123, 190	

See figure, slide 2

EFA vs. LCA Example

Table 1

Three-factor solution and two-class latent class model

Variables	3 Fa	ctor <u>Varim</u>	x Rotated	2-Clas	s Model
v ariables		Loadings			eans
				Low	High
	I	II	III	Class	Class
				n = 590	n = 165
Abandonment	.60	.41	.13	1.66	3.46
Mistrust	.66	.23	.27	1.71	3.31
Emotional Deprivation	.78	05	.16	1.68	3.49
Defectiveness	.74	.29	01	1.22	2.94
Social Isolation	.72	.18	.15	1.70	3.50
Dependence	.49	.53	18	1.39	2.30
Vulnerability to Harm	.65	.31	.19	1.36	2.67
Enmeshment	.19	(.72	.07	1.46	2.15
Failure	.66	.43	22	1.42	2.97
Entitlement	.44	05	.58	2.18	2.96
Insufficient Self-Control	.64	.14	02	2.20	3.44
Subjugation	.62	.54	.02	1.50	2.98
Self-Sacrifice	.03	.63	.42	2.90	3.60
Emotional Inhibition	.67	.13	.15	1.89	3.61
Unrelenting Standards	.01	.15	.84	3.71	4.08

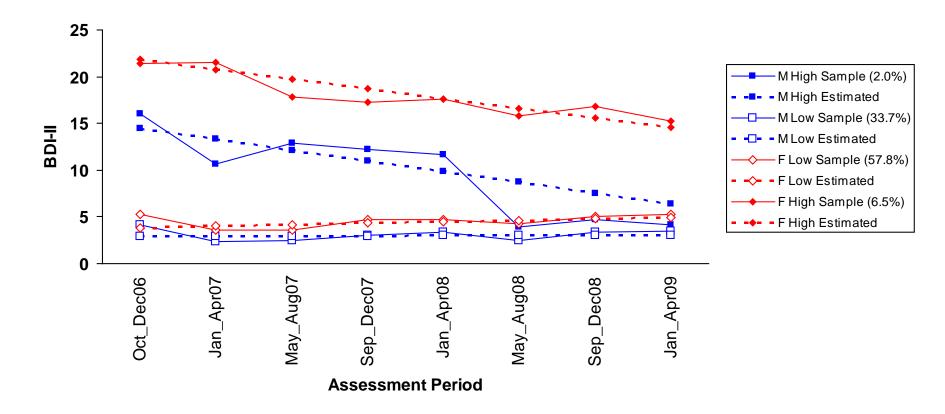
EFA vs. LCA Example

```
Title: YOUNG SCHEMA:
data: File is c:\Paul\mplus\schemascales.dat;
    Format is 1F4.0, 1F1.0, 15F8.2;
LISTWISE = ON:
variable: names are studid gender failure iscl aban mist edep
ssac enme sali einh usta depe defe enti subj vuln;
missing = blank:
auxiliary = studid gender;
usevariables are failure iscl aban mist edep
ssac enme sali einh usta depe defe enti subj vuln;
classes = c (2);
analysis: type = mixture;
starts = 100 10:
plot:
type is plot3;
series = failure iscl aban mist edep
ssac enme sali einh usta depe defe enti subj vuln (*);
output: tech1 tech11;
savedata:
file is c:\paul\mplus\classmember3;
save= cprobabilities;
                                             4.2-
                                             3.8
                                             3.6
                                             3.4
                                             3.2
                                             2.8
                                             2.6
                                             2.4-
                                             2.2
                                             1.2
                                             0.6
                                             0.4
```

EFA vs. LCA Example

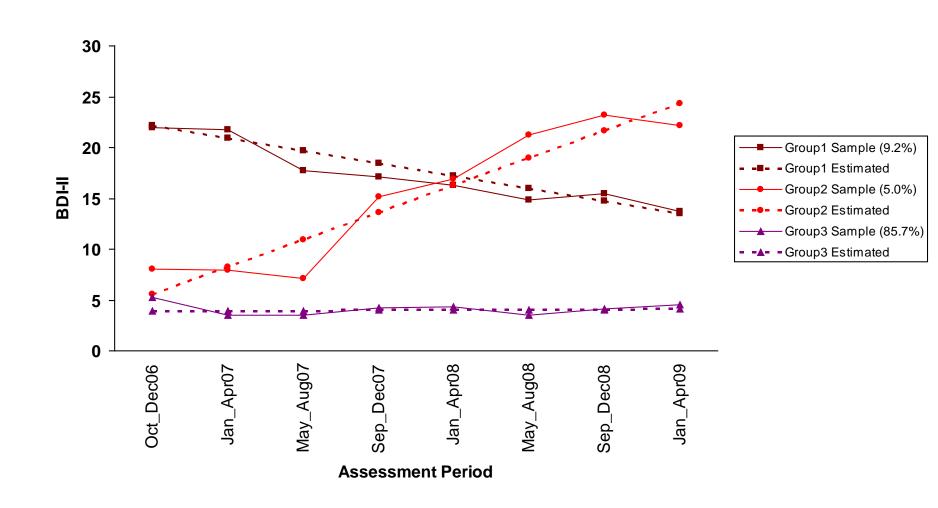
Means ISCL 3.443 0.163 21.120 0.	0.000 0.000 0.000 0.000
Latent Class 1 Means FAILURE 2.967 0.251 11.822 0. ISCL 3.443 0.163 21.120 0.	0.000
Means Means FAILURE 2.967 0.251 11.822 0. ISCL 3.443 0.163 21.120 0.	0.000
Means ISCL 3.443 0.163 21.120 0.	0.000
FAITHER 1 420 0.61 23 275 0.000 ISCL 3.443 0.163 21.120 0.	0.000
ABAN 3.457 0.323 10.695 0.	0.000
NEST 3.306 0.174 18.982 0.	
MIST 1 712 0 070 21 740 0 000 EDEP 3.486 0.227 15.350 0.	0.000
SSAC 3.600 0.114 31.519 0.	0.000
SERC 2 200 0 057 50 240 0 000 ENME 2.145 0.143 15.045 0.	0.000
FINDE 1 450 0 022 45 054 0 000 SALI 3.498 U.261 13.386 U.	0.000
SNIT 1.505 0.72 22.594 0.000 EINH 3.621 0.183 19.796 0.	0.000
FINE 1 903 0 000 21 052 0 000 USIA 4.0/8 U.132 30.994 U.	0.000
HSTA 3 713 0 058 64 124 0 000 DEPE 2.295 0.166 13.824 U.	0.000
DEFE 1 301 0 033 41 651 0 000 DEFE 2.936 0.314 9.340 U.	0.000
DPPP 1 21E 0 046 26 E1E 0 000 ENII 2.964 0.128 23.19/ 0.	0.000
FNIT 2 194 0 052 41 402 0 000 50BJ 2.9/9 0.1/5 17.012 0.	0.000
SUBJ 1.503 0.070 21.336 0.000 VULN 2.667 0.196 13.600 0.	0.000
VIIIN 1 257 0 052 25 891 0 000	
variances	
Vanianaaa	0.000
FAITHER 0.744 0.075 0.942 0.000 15CL 1.1// 0.080 14.634 0.	0.000
ABAN 0.892 0.082 10.825 0.	0.000
7P7M 0.902 0.92 10.925 0.000 MISI 0.819 0.0// 10.886 U.	0.000
MICT 0 010 0 077 10 606 0 000 EDEP 1.036 0.094 11.04/ U.	0.000
EDED 1 026 0 004 11 047 0 000 55AC 1.255 0.059 21.442 0.	0.000
ENME 0.514 0.044 11.7/3 0.	0.000
FNMF 0.514 0.044 11.772 0.000 SALI 0.912 0.084 10.802 0.	0.000
EINH 1.115 U.103 1U.852 U.	0.000
PINU 1 115 0 102 10 952 0 000 USIA 1.690 U.U/1 23.813 U.	0.000
HETE 1.500 0.71 22.812 0.000 DEFE 0.445 0.036 11.696 0.	0.000
DETE 0.3/3 0.066 8.636 0.	0.000
DEED 0.573 0.66 9.66 0.000 ENII 1.026 0.060 17.097 0.	0.000
FNITT 1 026 0 060 17 007 0 000	0.000
SUBJ 0.513 0.070 7.355 0.000 VULN 0.513 0.054 9.423 0.	0.000

VULN

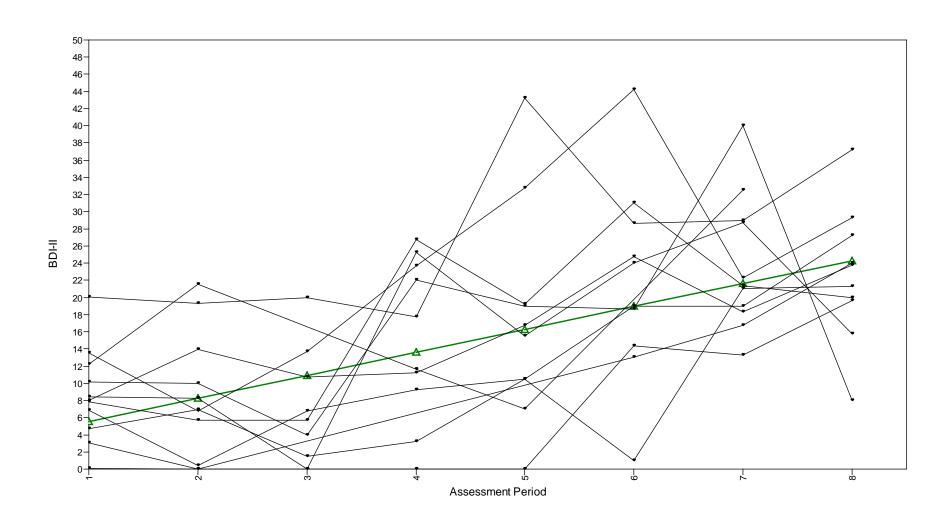

0.513

0.054

9.423


0.000

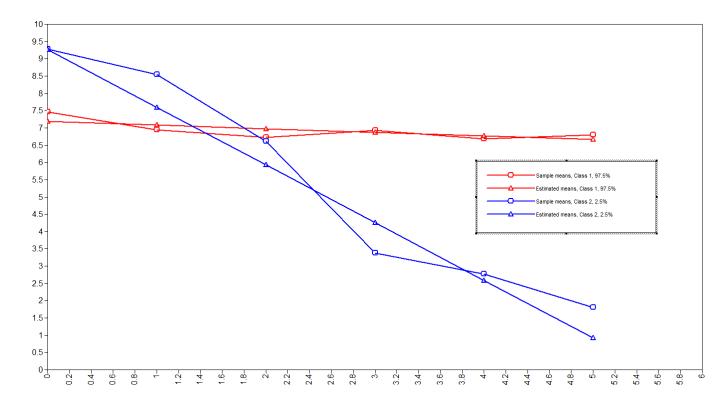
Growth Mixture Modeling




```
VARIABLE: NAMES ARE dep1-dep8;
CLASSES = cg (2) c (2);
KNOWNCLASSES = cg (g = 0 g = 1);
```

Growth Mixture Modeling

Growth Mixture Modeling


Growth Mixture Modeling: Another Example Start with a LGM Model

LGM Output

MODEL FI	T INFORMATION								
Number o	f Free Parameters	11							
Loglikel:	ihood								
	HO Value	-3779.045							
	H1 Value	-3745.014							
Informat:	ion Criteria			S	WITH				
	Akaike (AIC)	7580.091		I		-0.580	0.252	-2.301	0.021
000	Bayesian (BIC)	7624.349							
000	Sample-Size Adjusted BIC	7589.443		Means					
	(n* = (n + 2) / 24)			I		7.241			0.000
Chi-Smia	re Test of Model Fit			S		-0.724	0.112	-6.442	0.000
CIII-5qua.	re lest of model rit								
0000	Value	68.063							
000	Degrees of Freedom	16		Variance	23				
	P-Value	0.0000		I		2.948	0.289		0.000
DMSFA (D	oot Mean Square Error Of Appr	owimation)		S		2.338	0.348	6.718	0.000
IGIDER (IG	oot head bquare brior or appr	OAIMGCION)							
000	Estimate	0.089							
	90 Percent C.I.	0.068	0.111						
000000000000000000000000000000000000000	Probability RMSEA <= .05	0.002							
CFI/TLI									
0000	CFI	0.957							
0000	TLI	0.960							
Chi-Squa	re Test of Model Fit for the 1	Baseline Model							
	Value	1239.482							
000	Degrees of Freedom	15							
700000000000000000000000000000000000000	P-Value	0.0000							
SRMR (Sta	andardized Root Mean Square R	esidual)							
2000	Value	0.078							

```
USEVARIABLES ARE wlenjun w6enjun w11enjun w16enjun w21enjun w26enjun;
classes = c(2);
ANALYSIS: type = mixture;
starts = 40 16;
MODEL:
%overall%
I S | w1enjun@0 w6enjun@.2 w11enjun@.4 w16enjun@.6 w21enjun@.8 w26enjun@1;
plot:
type=plot3;
series = w1enjun(0) w6enjun(1) w11enjun(2) w16enjun(3) w21enjun(4) w26enjun(5);
output: sampstat stdyx tech1 tech4 tech7 tech11 tech12 tech14;
```


GMM Two Classes

MAXIMUM LOG-LIKELIHOOD VALUE FOR THE UNRESTRICTED (H1) MODEL IS -3745.014

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

253358	2
364676	27
650371	14
76974	16
107446	12
285380	1
68985	17
637345	19
902278	21
347515	24
392418	28
207896	25
851945	18
246261	38
462953	
127215	9
	364676 650371 76974 107446 285380 68985 637345 902278 347515 392418 207896 851945 246261 462953

THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED. RERUN WITH AT LEAST TWICE THE RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.

THE MODEL ESTIMATION TERMINATED NORMALLY

Number of Free Parameters 14

Loglikelihood

HO Value -3746.051 HO Scaling Correction Factor 1.6304

for MLR

Information Criteria

Akaike (AIC) 7520.101 Bayesian (BIC) 7576.429 Sample-Size Adjusted BIC 7532.004

(n* = (n + 2) / 24)

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

Latent Classes

> 1 402.70103 0.97506 2 10.29897 0.02494

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent Classes

> 1 402.70107 0.97506 2 10.29893 0.02494

CLASSIFICATION QUALITY

Entropy 0.969

Latent Class	1				Latent Class 2				
S W	ITH -0.172	0.235	-0.732	0.464	S WITH	-0.172	0.235	-0.732	0.464
Means					Means				
I	7.183	0.106	67.879	0.000	I	9.266	0.541	17.125	0.000
S	-0.515	0.107	-4.821	0.000	S	-8.348	1.006	-8.296	0.000
Variances					Variances				
I	2.799	0.338	8.291	0.000	I	2.799	0.338	8.291	0.000
S	0.951	0.282	3.376	0.001	S	0.951	0.282	3.376	0.001
Residual Va	riances				Residual Variance	es			
W1ENJUN	2.056	0.255	8.064	0.000	W1ENJUN	2.056	0.255	8.064	0.000
W6ENJUN	1.540	0.235	6.555	0.000	W6ENJUN	1.540	0.235	6.555	0.000
W11ENJUN	2.348	0.367	6.396	0.000	W11ENJUN	2.348	0.367	6.396	0.000
W16ENJUN	0.989	0.119	8.336	0.000	W16ENJUN	0.989	0.119	8.336	0.000
W21ENJUN	0.879	0.180	4.877	0.000	W21ENJUN	0.879	0.180	4.877	0.000
W26ENJUN	0.691	0.117	5.919	0.000	W26ENJUN	0.691	0.117	5.919	0.000

TECHNICAL 11 OUTPUT

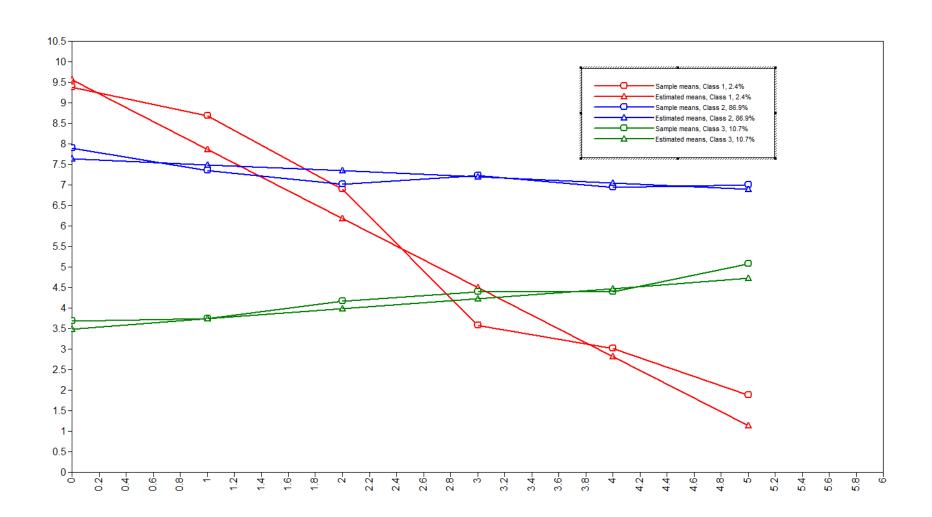
Random Starts Specifications for the k-1 Class Number of initial stage random starts Number of final stage optimizations	Analysis Model 40 16
VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST F	OR 1 (HO) VERSUS 2 CLASSES
HO Loglikelihood Value	-3779.045
2 Times the Loglikelihood Difference	65.990
Difference in the Number of Parameters	3
Mean	-6.979
Standard Deviation	25.801
P-Value	0.0004
LO-MENDELL-RUBIN ADJUSTED LRT TEST	
Value	62.529
P-Value	0.0005

TECHNICAL 14 OUTPUT

HO Loglikelihood Value

Approximate P-Value Successful Bootstrap Draws

2 Times the Loglikelihood Difference


Difference in the Number of Parameters

Random Starts Specifications for the k-1 Class A	nalysis Model
Number of initial stage random starts	40
Number of final stage optimizations	16
Random Starts Specification for the k-1 Class Mo	del for Generated Data
Number of initial stage random starts	0
Number of final stage optimizations for the	
initial stage random starts	0
Random Starts Specification for the k Class Mode	l for Generated Data
Number of initial stage random starts	40
Number of final stage optimizations	8
Number of bootstrap draws requested	Varies
PARAMETRIC BOOTSTRAPPED LIKELIHOOD RATIO TEST FO	

-3779.045

65.990

0.0000

MAXIMUM LOG-LIKELIHOOD VALUE FOR THE UNRESTRICTED (H1) MODEL IS -3745.014

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

-3724.148	573096	20
-3724.148	285380	1
-3724.148	364676	27
-3724.148	372176	23
-3724.148	399671	13
-3724.148	27071	15
-3724.148	207896	25
-3724.148	107446	12
-3724.148	902278	21
-3724.148	195873	6
-3724.148	68985	17
-3742.891	253358	2
-3746.051	569131	26
-3746.051	939021	8
-3752.868	153942	31

¹ perturbed starting value run(s) did not converge.

THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED. RERUN WITH AT LEAST TWICE THE RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.

Number of Free Parameters 17						
Loglikelihood	Latent (Class 1				
HO Value -3724.148 HO Scaling Correction Factor 1.5092 for MLR	s	WITH	0.603	0.212	2.844	0.004
Information Criteria	Means					
Akaike (AIC) 7482.296 Bayesian (BIC) 7550.694	I S		9.556 -8.424		20.686 -8.480	
Sample-Size Adjusted BIC 7496.750 $(n* = (n + 2) / 24)$	Variand	ces				
	I S		1.199 0.609			
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL	Latent (Class 2				
Latent	Means					
Classes	I		7.639			
	S		-0.744	0.120	-6.175	0.000
1 9.81451 0.02376 2 358.94485 0.86912						
3 44.24064 0.10712	Latent (Class 3				
	Means					
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS	I		3.492	0.598	5.843	0.000
BASED ON ESTIMATED POSTERIOR PROBABILITIES	S		1.232	0.404	3.053	0.002
Latent Classes						
1 9.81451 0.02376						
2 358.94482 0.86912 3 44.24067 0.10712						
CLASSIFICATION QUALITY						
Entropy 0.879						

VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST FOR 2 (H0) VERSUS 3 CLASSES

HO Loglikelihood Value	-3746.051	
2 Times the Loglikelihood Difference	43.805	
Difference in the Number of Parameters	3	
Mean	2.832	
Standard Deviation	9.517	
P-Value	0.0023	
LO-MENDELL-RUBIN ADJUSTED LRT TEST		

Value	41.508
P-Value	0.0030

PARAMETRIC BOOTSTRAPPED LIKELIHOOD RATIO TEST FOR 2 (H0) VERSUS 3 CLASSES

HO Loglikelihood Value	-3746.051
2 Times the Loglikelihood Difference	43.805
Difference in the Number of Parameters	3
Approximate P-Value	0.0000
Successful Bootstrap Draws	10

Number of	Free Parameters	20	TECHNICAL 11 OUTPUT			
Loglikeli		-3717.004 ctor 1.4087	Random Starts Specifications for the k-1 Clas Number of initial stage random starts Number of final stage optimizations	s Analysis Model 40 16		
Information Criteria VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST FOR 3 (H0) VERSUS 4 CLASSES						
	Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n* = (n + 2) / 24)		H0 Loglikelihood Value 2 Times the Loglikelihood Difference Difference in the Number of Parameters Mean Standard Deviation P-Value			
LO-MENDELL-RUBIN ADJUSTED LRT TEST FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS						
	THE ESTIMATED MODEL	FOR THE EMIENT CLASS	Value P-Value	13.539 0.2322		
Classe	3					
1 2 3	53.59245 8.82657 9.49459	0.02137 0.02299	PARAMETRIC BOOTSTRAPPED LIKELIHOOD RATIO TEST FO	DR 3 (H0) VERSUS 4 CLASSES		
4	341.08638	0.82588	HO Loglikelihood Value 2 Times the Loglikelihood Difference Difference in the Number of Parameters Approximate P-Value Successful Bootstrap Draws			