PSY 9556B (Feb 26) Update on Measurement Invariance Methods, and Longitudinal Panel Models

Updates on Measurement Invariance

- Gordon Cheung's presentation
 - Instead of chi-square difference test we can directly calculate invariance of each parameter
 - The issue of the referent item
 - My modified procedure using Little's approach to setting the scale
- Kateryna Keefer's presentation
 - Interpreting the impact of partial invariance

Cheung, G. W. & Lau, R. S. (2012). A direct comparison approach for testing measurement invariance. Organizational Research Methods, 15(2), 167-198.

Keefer, K. V., Holden, R. R., & Parker, J. D. A. (2013). Longitudinal assessment of trait emotional intelligence: Measurement invariance and construct continuity from late childhood to adolescence.

Example – One Latent Variable (4 indicators) at Two Time Points

Often in research we simply create an aggregate score without assessing MI

```
USEVARIABLES ARE wlenjcr wlpleas wlwell wlenjun w2enjcr w2pleas w2well w2enjun uni_ew uni_ew2;

DEFINE:
uni_ew = mean(wlenjcr wlpleas wlwell wlenjun);
uni_ew2 = mean (w2enjcr w2pleas w2well w2enjun);

ANALYSIS:
type=general;
```

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Means				
W1ENJCR	6.349	0.107	59.279	0.000
W1PLEAS	6.119	0.127	48.046	0.000
W1WELL	5.833	0.110	53.163	0.000
W1ENJUN	7.506	0.105	71.155	0.000
W2ENJCR	6.588	0.099	66.744	0.000
W2PLEAS	6.098	0.126	48.321	0.000
W2WELL	6.029	0.112	54.004	0.000
W2ENJUN	7.348	0.106	69.214	0.000
UNI_EW	6.457	0.089	72.778	0.000
UNI_EW2	6.516	0.088	73.642	0.000

```
!two-time point using Mplus default;
MODEL:
univx1 by wlenjcr* (L1)
w1pleas (L2)
w1well (L3)
wlenjun (L4);
univx2 by w2enjcr* (L5)
w2pleas (L6)
w2well (L7)
w2enjun (L8);
wlenjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well;
wlenjun with w2enjun;
[univx1 univx2];
[wlenjcr] (T1)
[w1pleas] (T2)
[w1well] (T3)
[wlenjun] (T4);
[w2enjcr] (T5)
[w2pleas] (T6)
[w2well] (T7)
[w2enjun] (T8);
MODEL CONSTRAINT: L1 = 4 - L2 - L3 - L4;
                T1 = 0 - T2 - T3 - T4;
                L5 = 4 - L6 - L7 - L8;
                T5 = 0 - T6 - T7 - T8;
                NEW(DiffL1 DiffL2 DiffL3 DiffL4);
                DiffL1 = L1 - L5;
                DiffL2 = L2 - L6;
                DiffL3 = L3 - L7;
                DiffL4 = L4 - L8;
ANALYSIS:
BOOTSTRAP = 1000;
output: sampstat residual stdyx tech4 cinterval(BCBOOTSTRAP);
```

Chi-Square Test o	f Model Fit			MODEL RESULTS				
Value Degrees P-Value	of Freedom	55.002 15 0.0000			Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
RMSEA (Root Mean	Square Error Of Approxim	nation)		UNIVX1 BY W1ENJCR	0.677			
	e ent C.I. lity RMSEA <= .05	0.080 0.058 0 0.013	0.104	W1PLEAS W1WELL W1ENJUN	1.266 1.270 0.787			
CFI/TLI CFI	rroy labels (100	0.976		UNIVX2 BY W2ENJCR W2PLEAS W2WELL	0.537 1.344 1.326	0.065 0.051 0.056	26.131	0.000
TLI		0.955		W2ENJUN UNIVX2 WITH	0.793			
				UNIVX1 W1ENJCR WITH	1.605	0.180	8.896	0.000
				W2ENJCR W1PLEAS WITH	1.603	0.197	8.139	0.000
				W2PLEAS W1WELL WITH	0.353	0.170	2.071	0.038
				W2WELL W1ENJUN WITH	0.151	0.133	1.142	0.253
				W2ENJUN Means	1.725	0.243	7.110	0.000
				UNIVX1 UNIVX2	6.434 6.524	0.089 0.089	71.999 73.056	0.000

Intercepts				
W1ENJCR	1.984	0.427	4.643	0.000
W1PLEAS	-2.055	0.462	-4.450	0.000
W1WELL	-2.362	0.360	-6.553	0.000
W1ENJUN	2.432	0.366	6.651	0.000
W2ENJCR	3.094	0.457	6.768	0.000
W2PLEAS	-2.666	0.363	-7.352	0.000
W2WELL	-2.616	0.383	-6.828	0.000
W2ENJUN	2.188	0.391	5.599	0.000
Variances				
UNIVX1	2.440	0.209	11.670	0.000
UNIVX2	2.398	0.211	11.379	0.000
Residual Varia				
W1ENJCR	3.213	0.253	12.723	0.000
W1PLEAS	2.398	0.339	7.076	0.000
W1WELL	0.703	0.208	3.387	0.001
W1ENJUN	2.830	0.321	8.813	0.000
W2ENJCR	2.946	0.248	11.889	0.000
W2PLEAS	1.656	0.215	7.694	0.000
W2WELL	0.556	0.161	3.446	0.001
W2ENJUN	2.658	0.252	10.534	0.000
New/Additional	Parameters			
DIFFL1	0.140	0.070	1.995	0.046
DIFFL2	-0.077	0.066	-1.165	0.244
DIFFL3	-0.056	0.053	-1.063	0.288
DIFFL4	-0.006	0.050	-0.123	0.902

CONFIDENCE INTERVALS OF MODEL RESULTS							
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
UNIVX1 BY							
W1ENJCR	0.488	0.539	0.559	0.677	0.768	0.787	0.827
W1PLEAS	1.097	1.140	1.166	1.266	1.378	1.395	1.451
W1WELL	1.146	1.168	1.186	1.270	1.361	1.377	1.417
W1ENJUN	0.654	0.689	0.705	0.787	0.870	0.886	0.916
UNIVX2 BY							
W2ENJCR	0.354	0.401	0.421	0.537	0.639	0.658	0.685
W2PLEAS	1.215	1.237	1.257	1.344	1.427	1.445	1.487
W2WELL	1.194	1.227	1.241	1.326	1.419	1.440	1.495
W2ENJUN	0.648	0.680	0.702	0.793	0.886	0.900	0.923
				•			
New/Additional	Parameters						
DIFFL1	-0.037	0.004	0.030	0.140	0.258	0.280	0.326
DIFFL2	-0.274	-0.217	-0.191	-0.077	0.024	0.050	0.087
DIFFL3	-0.201	-0.165	-0.153	-0.056	0.026	0.043	0.082
DIFFL4	-0.132	-0.109	-0.095	-0.006	0.071	0.084	0.116

Constraining Invariant Loadings and Evaluating Invariance of Intercepts

```
!first nested model with contraints of the loadings across time;
MODEL:
univx1 by wlenjcr* (L1)
w1pleas (L2)
w1well (L3)
wlenjun (L4);
univx2 by w2enjcr* (L1)
w2pleas (L2)
w2well (L3)
w2enjun (L4);
wlenjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well;
                                          Means
wlenjun with w2enjun;
                                             UNIVX1
                                                                6.435
                                                                           0.089
                                                                                     72.031
                                                                                                 0.000
[univx1 univx2];
                                             UNIVX2
                                                                6.524
                                                                           0.089
                                                                                     73.041
                                                                                                 0.000
[wlenjcr] (T1)
[w1pleas] (T2)
[w1well] (T3)
[w1enjun] (T4);
[w2enjcr] (T5)
[w2pleas] (T6)
[w2well] (T7)
[w2enjun] (T8);
MODEL CONSTRAINT: L1 = 4 - L2 - L3 - L4;
                T1 = 0 - T2 - T3 - T4;
                ! L5 = 4 - L6 - L7 - L8;
                T5 = 0 - T6 - T7 - T8;
NEW(DiffI1 DiffI2 DiffI3 DiffI4);
                DiffI1 = T1 - T5;
                DiffI2 = T2 - T6;
                DiffI3 = T3 - T7;
                DiffI4 = T4 - T8;
ANALYSIS:
BOOTSTRAP = 1000;
output: sampstat residual stdyx tech4 cinterval(BCBOOTSTRAP);
```

Evaluating Invariance of Intercepts

Value 61.290
Degrees of Freedom 18
P-Value 0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.076
90 Percent C.I. 0.056 0.098
Probability RMSEA <= .05 0.018

CFI/TLI

CFI 0.974 TLI 0.959

CONFIDENCE INTERVALS OF MODEL RESULTS

	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
New/Additional	l Parameters						
DIFFI1	-0.422	-0.367	-0.350	-0.202	-0.085	-0.063	-0.010
DIFFI2	-0.110	-0.057	-0.029	0.110	0.233	0.253	0.299
DIFFI3	-0.288	-0.228	-0.210	-0.111	-0.015	0.006	0.041
DIFFI4	0.055	0.084	0.106	0.204	0.314	0.334	0.378

Constraining 2 Invariant Intercepts and Assessing Invariance of the Residuals

```
!constraining two invariant intercepts across time;
MODEL:
univx1 by wlenjcr* (L1)
w1pleas (L2)
w1well (L3)
wlenjun (L4);
univx2 by w2enjcr* (L1)
w2pleas (L2)
w2well (L3)
w2enjun (L4);
wlenjcr with w2enjcr;
w1pleas with w2pleas;
w1well with w2well;
wlenjun with w2enjun;
[univx1 univx2];
[wlenjcr] (T1)
[w1pleas] (T2)
[w1well] (T3)
[w1enjun] (T4);
[w2enjcr] (T5)
[w2pleas] (T2)
[w2well] (T3)
[w2enjun] (T8);
wlenjcr (r1)
w1pleas (r2)
w1well (r3)
wlenjun (r4);
w2enjcr (r5)
w2pleas (r6)
w2well (r7)
w2enjun (r8);
MODEL CONSTRAINT: L1 = 4 - L2 - L3 - L4;
                 T1 = 0 - T2 - T3 - T4;
NEW(Diffr1 Diffr2 Diffr3 Diffr4);
                Diffr1 = r1 - r5;
                Diffr2 = r2 - r6;
                Diffr3 = r3 - r7;
                Diffr4 = r4 - r8;
ANALYSIS:
BOOTSTRAP = 1000:
output: sampstat residual stdyx tech4 cinterval(BCBOOTSTRAP);
```

Constraining 2 Invariant Intercepts and Assessing Invariance of the Residuals

Value	65.549						
Degrees of Freedom	19						
P-Value	0.0000						
			Means				
MSEA (Root Mean Square Error Of Appro	ximation)		UNIVX1	6.415	0.089	71.988	0.000
			UNIVX2	6.552	0.096	68.401	0.000
Estimate	0.077						
90 Percent C.I.	0.057	0.098					
Probability RMSEA <= .05	0.014						
CFI/TLI			If I constr	ain all foui	rinterce	epts:	
CDT.	0.070		Means				
CFI	0.972		UNIVX1	6.418	0.088	72.558	0.000
TLI	0.958		UNIVX2	6.534	0.091	72.187	0.000

CONFIDENCE INTER	RVALS OF MODE	L RESULTS					
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
New/Additional	Parameters						
DIFFR1	-0.272	-0.164	-0.094	0.359	0.829	0.933	1.021
DIFFR2	-0.120	0.114	0.229	0.749	1.293	1.424	1.635
DIFFR3	-0.384	-0.269	-0.228	0.061	0.335	0.386	0.507
DIFFR4	-0.473	-0.332	-0.230	0.203	0.672	0.805	0.905

Summary of "Latent" Mean Differences Across Time

Model	M	M	Diff
	Time 1	Time 2	
Equal weights (across loadings and across time)	6.457	6.516	0.059
CFA with unconstrained loadings and intercepts	6.434	6.524	0.090
All constrained loadings (across time)	6.435	6.524	0.089
Two constrained intercepts (across time)	6.415	6.552	0.137
Four constrained intercepts(across time)	6.418	6.534	0.116
Could remove item with invariant intercepts (if			
enough items left over)			

Panel Longitudinal Models

- Can be viewed as the structural part of a longitudinal SEM model
- Typical parts:
 - Auto-regressive regression paths
 - Cross-lagged regression paths
 - Correlated residuals
 - Can add time invariant covariates (a few different ways of modeling)
 - Can add time variant covariates
 - Could add a LGM structure (ALT models next week)
- Basic simplex (autoregressive) change process
 - AR1, AR2,...
 - What is the meaning of AR2
 - Simplex change process vs. latent growth model meaning

Example Using Mplus

In the following example I use single observed variables across 8 time points. A more powerful design would use latent variables and would test for measurement invariance first.

DEFINE: if (gender eq 1) then ngender = 1; if (gender eg 2) then ngender = 0; analysis: estimator = mlr; model: dep2 on dep1; dep3 on dep2; dep4 on dep3; dep5 on dep4; dep6 on dep5; dep7 on dep6; dep8 on dep7; drink2 on drink1; drink3 on drink2: drink4 on drink3; drink5 on drink4; drink6 on drink5; drink7 on drink6; drink8 on drink7; dep1 with drink1; dep2 with drink2; dep3 with drink3; dep4 with drink4; dep5 with drink5;

syntax continued

```
dep6 with drink6;
dep7 with drink7;
dep8 with drink8:
drink4 on drink1:
drink5 on drink2:
drink6 on drink3:
drink7 on drink4:
drink8 on drink5:
dep8 on dep5;
dep5 on dep2;
dep1 drink1 on ngender;
dep2 on drink1;
dep3 on drink2;
dep4 on drink3;
dep5 on drink4;
dep6 on drink5;
dep7 on drink6;
dep8 on drink7;
output: sampstat stdyx modindices;
```

Example Using Mplus

Chi-Square Test of Model Fit

Value	199.547*
Degrees of Freedom	98
P-Value	0.0000
Scaling Correction Factor	1.4174
for MLR	

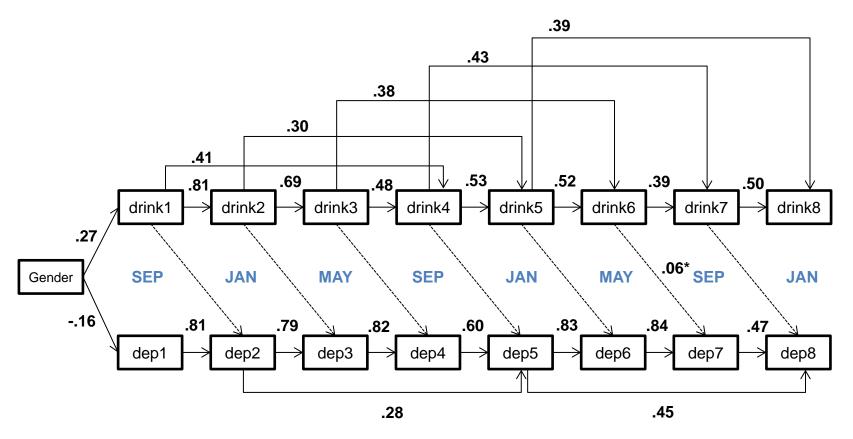
* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.050	
90 Percent C.I.	0.040	0.060
Probability RMSEA <= .05	0.484	

CFI/TLI

CFI	0.965
TLI	0.951


Chi-Square Test of Model Fit for the Baseline Model

Value			3020.090
Degrees	of	Freedom	136
P-Value			0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.052

Example Using Mplus

Standardized coefficients all significant p < .001, except .06* significant p < .05. Note that drink-dep correlated residuals were included but not significant. An alternative model testing the effects of depression on drinking revealed no significant cross-lag associations.