PSY 9556B (March 12) Multiple Groups in Longitudinal Analysis

CLSA Proposals

- 1. Retirement status, work ability, and depression
- 2. Changes in mobility over time and health outcomes
- 3. Healthy successful aging with diabetes
- 4. Healthy successful aging as a function of social functioning

Suggestions for full application:

- In the introduction describe prevalence rates, future rates, cost/implications
- Theoretical value also in developing knowledge of aging (most of you said this)
- Describe the longitudinal design in detail including cohort effects (e.g., mandatory retirement)
- Positive "spin" focusing on protective factors (e.g., social support, neighbourhood cohesion)
- In terms of implications, could describe potential future interventions (ways to improve physical mobility, social cohesion)
- Graph of trajectories by group (e.g., diabetes, non-diabetes)

PSY 9556B (March 12) Multiple Groups in Longitudinal Analysis

- Useful when number of groups is small (and interested in comparing groups)
- Measurement Invariance
- Sample size per group at least 50 (100 would be much more stable)
- Alternative model group as categorical variable with dummy code
- Imputation of missing data within group (Little)
- Note defaults in Mplus:
 - Assumes measurement invariance across groups
 - And therefore constrains the following parameters to equality across groups:
 - Factor loadings
 - Intercepts (or thresholds for categorical items)
 - Structural and residual parameters are unconstrained
 - Factor mean fixed at zero in first group
 - No constraints across repeated measures (need to add your own constraints)

Multiple Groups in Longitudinal Analysis

- Appropriate Null Model (for CFI calculations) Little p. 215-216
 - No covariances
 - Means and variances equal across groups and time points
 - Not essential if you use Cheung's new invariance procedure

```
USEVARIABLES ARE weekla week2a week3a w1Beck w2Beck w3Beck;
grouping = gender (1=male 2=female);
analysis: model = nocovariances;
model:week1a-week3a (1);
w1Beck-w3Beck(2);
[week1a-week3a] (3);
[w1Beck-w3Beck] (4);
output: sampstat;
```

$$CFI = 1 - \frac{\max\left[\left(x_t^2 - df_t\right), 0\right]}{\max\left[\left(x_t^2 - df_t\right), \left(x_0^2 - df_0\right), 0\right]}$$

Note: in this example means and variances are constrained to equality across groups by default (in addition to my constraints across time points)

Multiple Groups in Longitudinal Analysis

- Can start with a configural invariance model across groups and time points
- Could alternatively do analyses separately by group if interested in longitudinal variance in each group
- For weak (loading) invariance, can start with omnibus test constraining loadings across groups and time-points
 - If concerned about potential lack of invariance across groups or time, start with either group or time constraint
- Same as above for invariance of the intercepts
- Tests of mean level differences in latent constructs
 - Think in terms of ANOVA designs with main effects, interactions
- Invariance (homogeneity) of the variance-covariance matrix
 - If no differences across groups, then could combine groups
 - If differences exist, continue investigation across groups
 - If differences in variances, consider using phantom constructs

Multiple Groups in Longitudinal Analysis: Three Types of Data Files in Mplus

1. All individual data stored in one data file: "Grouping option"

```
Title: longitudinal cfa example:
data: File is sem mplus.dat;
    Format is 1F4, 1F1, 1F2, 23F8.2, 1F11.3, 72F8.2;
variable: names are studid gender age
bppa bpv bpa bph bptot
sq1 sq2 sq3 sq4 sq5 sq6 sq7 sq8 sq9 sq10 sq11 sq12 sq13 sq14 sq15
es es pt es fin grade
drink1 drink2 drink3 drink4 epis1 epis2 epis3 epis4
stress1 stress2 stress3 stress4 pleased1 pleased2 pleased3 pleased4
enjovc1 enjovc2 enjovc3 enjovc4 enjovu1 enjovu2 enjovu3 enjovu4
effort1 effort2 effort3 effort4 harm1 harm2 harm3 harm4 dep1 dep2 dep3 dep4
drink1b drink2b drink3b drink4b epis1b epis2b epis3b epis4b
stress1b stress2b stress3b stress4b please1b please2b please3b please4b
enjovc1b enjovc2b enjovc3b enjovc4b enjovu1b enjovu2b enjovu3b enjovu4b
effort1b effort2b effort3b effort4b harm1b harm2b harm3b harm4b
dep1b dep2b dep3b dep4b;
missing = blank;
usevariables are stress1b stress2b stress3b stress4b
drink1b drink2b drink3b drink4b;
grouping is gender (1=male 2=female); !multi-group statement
model: stress by stress1b stress2b stress3b stress4b;
drink by drink1b drink2b drink3b drink4b;
model female: ! statements to indicate that parameters which are not constrained across groups
stress by stress2b stress3b stress4b; !to remove default loading equality constraints across groups
drink by drink2b drink3b drink4b; !do not include first indicator which was fixed
output: sampstat stdyx modindices;
```

Multiple Groups

2. Individual data stored in separate files: Multiple file statement

```
Title: longitudinal cfa example;
data: File (male) is sem male.txt;
      File (female) is sem female.txt;
    Format is 1F4, 1F1, 1F2, 23F8.2, 1F11.3, 72F8.2;
variable: names are studid gender age
bppa bpv bpa bph bptot
sq1 sq2 sq3 sq4 sq5 sq6 sq7 sq8 sq9 sq10 sq11 sq12 sq13 sq14 sq15
es es pt es fin grade
drink1 drink2 drink3 drink4 epis1 epis2 epis3 epis4
stress1 stress2 stress3 stress4 pleased1 pleased2 pleased3 pleased4
enjovc1 enjovc2 enjovc3 enjovc4 enjovu1 enjovu2 enjovu3 enjovu4
effort1 effort2 effort3 effort4 harm1 harm2 harm3 harm4 dep1 dep2 dep3 dep4
drink1b drink2b drink3b drink4b epis1b epis2b epis3b epis4b
stress1b stress2b stress3b stress4b please1b please2b please3b please4b
enjoyc1b enjoyc2b enjoyc3b enjoyc4b enjoyu1b enjoyu2b enjoyu3b enjoyu4b
effort1b effort2b effort3b effort4b harm1b harm2b harm3b harm4b
dep1b dep2b dep3b dep4b;
missing = blank;
usevariables are stress1b stress2b stress3b stress4b
drink1b drink2b drink3b drink4b;
!grouping is gender (1=male 2=female); !don't need
model: stress by stress1b stress2b stress3b stress4b;
drink by drink1b drink2b drink3b drink4b;
model female: ! statements to indicate that parameters which are not constrained across groups
stress by stress2b stress3b stress4b; !to remove default loading equality constraints across groups
drink by drink2b drink3b drink4b; !do not include first indicator which was fixed
output: sampstat stdyx modindices;
```

Multiple Groups

3. Summary Data, One Data Set

```
Title: Example of a latent-growth-modeling study with summary data;
data:
file is groupdata.txt;
ngroups = 2;
nobservations = 180 200;
type=correlation means stdeviations;
variable:
names are x1 x2 x3 x4 x5;
usevariables are x1 x2 x3 x4 x5;
analysis:
estimator = ml; !note summary data such as correlation matrix cannot use mlr
model:
latent1 by x1 x2 x3 x4 x5;
output: sampstat residual stdyx tech4 modindices;
```

```
groupdata - Notepad
File Edit Format View Help
5.0 5.2 5.7 6.2 6.1
3.9 4.1 3.8 4.5 4.6
1.0
.70 1.0
.60 .70 1.0
.50 .60 .70 1.0
.40 .50 .60 .70 1.0
4.1 4.3 4.6 5.2 5.1
3.8 3.9 3.8 4.1 4.2
1.0
.68 1.0
.58 .69 1.0
.48 .61 .68 1.0
.41 .48 .59 .69 1.0
```

Time Series, P-technique, and Dynamic P-technique

- Time-series analysis applications
- Factor Analysis P-Technique
 - The correlation matrix one per subject
 - Need several repeated measures (minimum~50)
 - Can do multi-group analysis using individual as the group
 - Ergodicity
 - Nomothetic and idiographic models
 - Applications
- Dynamic P-technique
 - Adding Lag1 and Lag2 variables (see Little, p. 234)
 - Applications

Full Longitudinal Mediation: Example with Manifest Variables

```
USEVARIABLES ARE week1a week6a week11a week16a week21a week26a
wlwork w6work wllwork wl6work w2lwork w26work
w1final w6final w11final w16final w21final w26final:
ANALYSIS:
bootstrap = 1000;
MODEL:
!autoregressive paths
                                    !correlations observed exogenous
                                    weekla with wlwork wlfinal:
week6a on week1a:
                                    wlwork with wlfinal:
week11a on week6a:
                                    !cross-lagged mediation paths
week16a on week11a:
                                    w6work on weekla;!first complete mediation path
week21a on week16a:
                                    w11final on w6work:
week26a on week21a:
                                    w11work on week6a; !second complete mediation path
w6work on w1work:
                                    w16final on w11work:
w11work on w6work;
                                    w16work on week11a; !third complete mediation path
w16work on w11work:
                                    w21final on w16work;
w21work on w16work:
                                    w21work on week16a;!fourth complete mediation path
w26work on w21work:
                                    w26final on w21work:
w6final on w1final:
                                    w6final on w1work;!incomplete path
w11final on w6final:
                                    w26work on week21a; !incomplete path
w16final on w11final:
                                     !modifications
w21final on w16final:
                                    week16a on week1a:
w26final on w21final:
                                    w16final on w6final:
!residual paths
                                    MODEL INDIRECT:
week6a with w6work w6final:
                                    w11final IND week1a:
w6work with w6final:
                                    w16final IND week6a;
week11a with w11work w11final:
                                    w21final IND week11a:
w11work with w11final:
                                    w26final IND week16a;
week16a with w16work w16final:
                                    w26final IND week1a: total indirect effect from beginning to end
w16work with w16final;
                                    OUTPUT: sampstat stdyx modindices tech4 cinterval(bcbootstrap);
week21a with w21work w21final:
w21work with w21final;
week26a with w26work w26final:
```

w26work with w26final:

MODEL FIT INFORMATION		CFI/TLI	
Number of Free Parameters	81	CFI	0.886
Loglikelihood		TLI	0.842
		Chi-Square Test of Model Fit for the E	Baseline Model
HO Value	-14364.010	-	
H1 Value	-14108.598	Value	3685.663
		Degrees of Freedom	150
Information Criteria		P-Value	0.0000
Akaike (AIC)	28890.019	SRMR (Standardized Root Mean Square Re	esidual)
Bayesian (BIC)	29215.919		•
Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$	28958.888	Value	0.118
Chi-Square Test of Model Fit		· · · · · · · · · · · · · · · · · · ·	
Value	510.824		
Degrees of Freedom	108		
P-Value	0.0000		
RMSEA (Root Mean Square Error Of Appr	oximation)		
Estimate	0.095		
90 Percent C.I.	0.087	0.103	
Probability RMSEA <= .05	0.000		

STANDARDIZED MODEL RESULTS

STDYX Standardization

				Two-Tailed					
	Estimate	S.E.	Est./S.E.	P-Value					
WEEK6A ON					W21WORK ON				
WEEK1A	0.481	0.043	11.283	0.000	W16WORK	0.442	0.047	9.381	0.000
					WEEK16A	0.052	0.052	1.008	0.313
WEEK11A ON					1122112 011	0.002	0.002	1.555	0.010
WEEK6A	0.532	0.041	12.906	0.000	W26WORK ON				
					W21WORK	0.363	0.052	7.004	0.000
WEEK16A ON					WEEK21A	-0.165	0.058	-2.864	0.004
WEEK11A	0.173	0.050	3.447	0.001					
WEEK1A	0.558	0.039	14.291	0.000	W6FINAL ON				
					W1FINAL	0.739	0.024	30.743	0.000
WEEK21A ON					W1WORK	0.007	0.036	0.183	0.855
WEEK16A	0.372	0.047	7.932	0.000					
					W11FINAL ON				
WEEK26A ON					W6FINAL	0.880	0.013	69.890	0.000
WEEK21A	0.597	0.040	14.993	0.000	W6WORK	0.028	0.027	1.037	0.300
W6WORK ON					W16FINAL ON				
W1WORK	0.379	0.048	7.943	0.000	W11FINAL	0.578	0.048	11.932	0.000
WEEK1A	-0.103	0.050	-2.074	0.038	W11WORK	0.004	0.025	0.154	0.878
					W6FINAL	0.357	0.049	7.213	0.000
W11WORK ON					W21FINAL ON				
W6WORK	0.146	0.057	2.542	0.011	W16FINAL	0.912	0.009	96.968	0.000
WEEK6A	0.048	0.057	0.845	0.398	W16WORK	0.014	0.024	0.584	0.559
W16WORK ON					W26FINAL ON				
W11WORK	0.210	0.053	3.928	0.000	W21FINAL	0.939	0.007	133.325	0.000
WEEK11A	-0.128	0.055	-2.344	0.019	W21WORK	-0.014	0.022	-0.653	0.514

WEEK6A WITH					WEEK26A WITH				
W6WORK	-0.053	0.054	-0.989	0.323	W26WORK	-0.095	0.059	-1.609	0.108
W6FINAL	0.062	0.055	1.138	0.255					
	31332		21200	51255	W26FINAL	0.044	0.060	0.726	0.468
W6WORK WITH					NO CHORD NAME				
W6FINAL	-0.048	0.053	-0.893	0.372	W26WORK WITH				
					W26FINAL	0.167	0.059	2.815	0.005
WEEK11A WITH									
W11WORK	0.048	0.057	0.838	0.402	WEEK1A WITH				
W11FINAL	0.004	0.059	0.071	0.944	W1WORK	-0.220	0.049	-4.488	0.000
					W1FINAL	-0.059	0.051	-1.169	0.243
W11WORK WITH									
W11FINAL	-0.019	0.060	-0.309	0.757	W1WORK WITH				
					W1FINAL	0.137	0.050	2.715	0.007
WEEK16A WITH									
W16WORK	-0.130	0.054	-2.418	0.016	Means				
W16FINAL	-0.163	0.058	-2.817	0.005	WEEK1A	0.701	0.056	12.578	0.000
					W1WORK	2.584	0.106	24.370	0.000
W16WORK WITH					W1FINAL	5.230	0.196	26.742	0.000
W16FINAL	0.175	0.056	3.136	0.002	NII INAI	0.200	0.130	20.712	0.000
UPPROAD NITHII									
WEEK21A WITH									
W21WORK	-0.087	0.055	-1.584	0.113					
W21FINAL	-0.025	0.055	-0.453	0.651					
W21WORK WITH									
W21FINAL	0.122	0.056	2.185	0.029					
	- /								

CONFIDENCE INTERVALS OF STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

STDYX Standardization

	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%						
Effects from WEEK1A to W11FINAL													
Specific indire	ct												
W11FINAL W6WORK WEEK1A	-0.013	-0.010	-0.009	-0.003	0.003	0.005	0.007						
ffects from WEEK	6A to W16FI	NAL											
Specific indire	ct												
W16FINAL W11WORK WEEK6A	-0.004	-0.003	-0.002	0.000	0.003	0.003	0.004						
	Total Total indirect Specific indire W11FINAL W6WORK WEEK1A ffects from WEEK Total Total indirect Specific indire W16FINAL W11WORK	ffects from WEEK1A to W11FI Total -0.013 Total indirect -0.013 Specific indirect W11FINAL W6WORK WEEK1A -0.013 ffects from WEEK6A to W16FI Total -0.004 Total indirect -0.004 Specific indirect W16FINAL W11WORK	ffects from WEEK1A to W11FINAL Total -0.013 -0.010 Total indirect -0.013 -0.010 Specific indirect W11FINAL W6WORK WEEK1A -0.013 -0.010 ffects from WEEK6A to W16FINAL Total -0.004 -0.003 Total indirect -0.004 -0.003 Specific indirect W16FINAL W11WORK	### Total	### Total	ffects from WEEK1A to W11FINAL Total	Total						

STDYX Standardization												
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%					
Effects from WEEK11A to W21FINAL												
Total Total indirect			-0.008 -0.008				0.008					
Specific indire	ct											
W21FINAL W16WORK WEEK11A	-0.011	-0.009	-0.008	-0.002	0.004	0.005	0.008					
Effects from WEEK	16A to W26F	INAL										
Total Total indirect	-0.005 -0.005		-0.004 -0.004		0.002 0.002	0.003 0.003	0.004 0.004					
Specific indire	ct											
W26FINAL W21WORK WEEK16A	-0.005	-0.004	-0.004	-0.001	0.002	0.003	0.004					
Effects from WEEK1A to W26FINAL												
Total Total indirect	-0.009 -0.009		-0.006 -0.006	-0.002 -0.002	0.002	0.003	0.005					