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The first important point to note is that most of the assumptions in bivariate or multiple linear 
regression involve the residuals. Note that the residuals (i.e., the Y – Y’ values) refer to the residualized 
or conditioned values of the outcome variable Y. It is beyond the scope of this paper to show why the 
assumptions involve the residualized Y values and not Y values. Suffice it to say that it is violation of the 
assumptions at the residual level that will be associated with incorrect values and inferences about the 
regression coefficient population values (parameters).  

Before focusing on the residuals, let’s consider the predictor(s). There are no distributional assumptions 
involving the predictors (Xs). The only issue is whether the predictors are measured without error and 
this relates to whether these variables are fixed or random as discussed below. 

X is fixed (or measured without error). As Fox (2008) points out, X values are often sampled (e.g., 
observational or survey research) rather than fixed (e.g., three drug doses selected apriori in an 
experimental design). In other words, on a questionnaire scale that varies from 15 to 75, we don’t know 
ahead of time, how many cases will fall in each increment. Furthermore, when a particular case has an 
observed value of 37, we don’t know if the true score is indeed 37 or whether there is some 
measurement error. An assumption is that X is measured without error (i.e., there is no measurement 
error). When X is not error-free, the regression coefficient will be attenuated (lower than the parameter 
value in the population). It is not uncommon to use a correction for unreliability in the estimation of 
correlations in two measures. Note however that a measure can have different sources of error (e.g., 
lack of internal consistency, temporal stability, or inter-rater agreement). The use of latent variables in 
structural equation modeling separates True from Error variance in constructs of interest and therefore 
provides better estimates of regression coefficients. In a regression model, any measurement error in 
the outcome variable Y is absorbed in the residual, and the regression coefficient will not be biased. 
However, the standardized regression coefficient and the proportion of variance explained by the 
predictor will be attenuated. 

X is uncorrelated with the residuals. The residual variance is the proportion that is not explained by X 
and therefore can include omitted causes of Y as well as random error. The assumption of independence 
would be satisfied as long as the omitted cause is unrelated to X. Otherwise there would be a correlation 
between X and e (residual). When this assumption is not satisfied, we have made an error in 
specification (Fox, 2008; Kline, 2011). The consequence is that the regression coefficients will be biased. 
The important point here is to strive for a model that includes all important predictors especially when 
these predictors overlap with each other. 

Example. Let’s say  I use Number of drinks as a predictor of Aggression, the residual would include 
unknown sources of variation. I know from previous research that one of these unknown sources would 
be Sex (i.e., men get into more physical fights than do women) and Sex correlates with the Number of 



drinks (men drink more). So here the residual correlates with the predictor because there is an 
important omitted variable (Sex) that has not been brought into the model. The impact is that the 
regression coefficient associated with Number of drinks will be biased (lower or higher than the 
population parameter) when Sex is not included in the model. 

Linear relationship between X and Y. Non-linear associations can be modeled in different ways (e.g., 
adding a quadratic component). Modeling a non-linear relation without taking into account the non-
linear component would lead to inaccurate results. 

 

Assumptions Regarding Errors/Residuals 

Mean of 0. The residuals at each level of the predictor X in a bivariate regression or at each combination 
of the predictors (Xs) in a multiple regression should have a mean of 0. Departure from a mean of 0 
could be due to a nonlinear relation between the predictor(s) and the outcome (Williams et al., 2013). 

Normality of the errors. The errors (residuals) are normally distributed. Violation of this assumption is 
problematic only in small samples (Williams et al., 2013). 

Independence of residuals. Again this assumption involves the residuals and not the actual Y values. In 
multilevel or clustered data, where the observations at the lower level are often non-independent (i.e., 
they are correlated), disregarding this non-independence will probably result in non-independence of 
the residuals. Multilevel modeling addresses this problem by separating the variance in the outcome 
attributable to the individual units at the lowest level and the clusters at the higher level(s). Violation of 
this assumption can cause significant inaccuracies in the standard error and confidence intervals of the 
regression coefficient estimates.  

Homoscedasticity. The variance of the errors (residuals) remains the same at different values of the 
predictor (X) in a bivariate regression or combinations of the predictors in a multiple regression. 
Violation of this assumption can lead to inaccurate inferential tests. One approach to address this 
violation is to use robust estimation or bootstrapping methods (Williams et al., 2013). 
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