9555A Structural Equation Modeling Introduction and Overview

Introductions -- and why am I here teaching this course?

Course Outline

Content

Lecturing style

Readings

Evaluation

Expectations

What you will get out of this course

Projects

Overview of SEM

Mplus and other software

Where Does SEM Fit Within Mathematical Modeling?

- Algebraic Models
- Computational Models
 - Algorithmic
 - Connectionist
 - Bayesian

The algebraic model – like the linear regression model

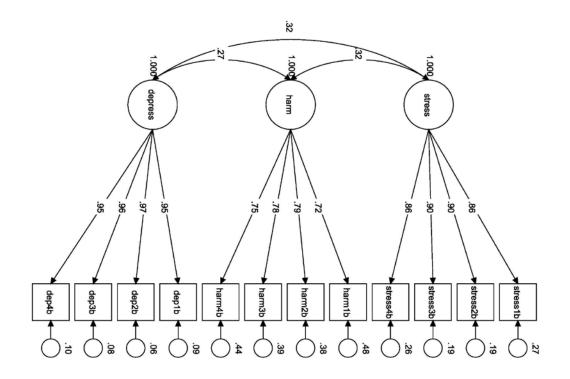
$$y = ax + b$$

This model describes how input stimuli and model parameters produce output

- A model reveals something (limited) but meaningful about reality
- e.g., The mean is a model that describes the reality of a collection of numbers
- The linear regression equation is a model of the relation between two variables
- SEM "translates" the variance-covariance data matrix into a more parsimonious representation of the associations between the variables
 - The variance-covariance matrix

	Covariances				
	STRESS1B	STRESS2B	STRESS3B	STRESS4B	HARM1B
STRESS1B	2.949				
STRESS2B	2.241	2.860			
STRESS3B	2.304	2.434	3.099		
STRESS4B	2.202	2.191	2.311	2.900	
HARM1B	0.624	0.577	0.625	0.508	2.542
HARM2B	0.566	0.645	0.631	0.589	1.554
HARM3B	0.638	0.721	0.730	0.682	1.559
HARM4B	0.458	0.571	0.639	0.584	1.354
DEP1B	2.450	2.767	3.218	2.901	2.086
DEP2B	2.273	2.627	3.052	2.738	1.787
DEP3B	2.415	2.645	3.304	3.085	1.770
DEP4B	2.425	2.733	3.248	3.230	1.249
	Covariances				
	HARM2B	HARM3B	HARM4B	DEP1B	DEP2B
HARM2B	2.818				
HARM3B	1.799	3.100			
HARM4B	1.635	1.785	2.805		
DEP1B	2.244	1.816	2.293	36.575	
DEP2B	2.279	1.588	2.257	32.445	33.133
DEP3B	2.228	2.136	2.399	33.827	33.264
DEP4B	1.885	1.419	2.196	32.774	31.523
	Covariances				
	DEP3B	DEP4B			
DEP3B	38.344				
DEP4B	34.109	35.753			

• Note $cov_{xy} = r_{xy} sd_x sd_y$


	Covariances STRESS1B	STRESS2B	STRESS3B	STRESS4B	HARM1B
STRESS1B	2.949				
STRESS2B	2.241	2.860			
STRESS3B	2.304	2.434	3.099		
STRESS4B	2.202	2.191	2.311	2.900	
HARM1B	0.624	0.577	0.625	0.508	2.542
HARM2B	0.566	0.645	0.631	0.589	1.554
HARM3B	0.638	0.721	0.730	0.682	1.559
HARM4B	0.458	0.721	0.639	0.584	1.354
DEP1B	2.450	2.767	3.218	2.901	2.086
DEP1B DEP2B			3.052	2.738	1.787
	2.273	2.627			
DEP3B	2.415	2.645	3.304	3.085	1.770
DEP4B	2.425	2.733	3.248	3.230	1.249
DEP4B	2.425	2.733	3.248	3.230	1.249
8	2.425 Correlations	2.733	3.248	3.230	1.249
8		2.733 STRESS2B	3.248 STRESS3B	3.230 STRESS4B	1.249 HARM1B
8	Correlations				
	Correlations STRESS1B				
STRESS1B	Correlations STRESS1B	STRESS2B			
STRESS1B STRESS2B	Correlations STRESS1B 1.000 0.772	STRESS2B 	STRESS3B		
STRESS1B STRESS2B STRESS3B	Correlations STRESS1B 1.000 0.772 0.762	STRESS2B 	STRESS3B 	STRESS4B	
STRESS1B STRESS2B STRESS3B STRESS4B	Correlations STRESS1B 1.000 0.772 0.762 0.753	1.000 0.818 0.761	STRESS3B 	STRESS4B	HARM1B
STRESS1B STRESS2B STRESS3B STRESS4B HARM1B	Correlations STRESS1B 1.000 0.772 0.762 0.753 0.228	1.000 0.818 0.761 0.214	1.000 0.771 0.223	1.000 0.187	1.000
STRESS1B STRESS2B STRESS3B STRESS4B HARM1B HARM2B	Correlations STRESS1B 1.000 0.772 0.762 0.753 0.228 0.196	1.000 0.818 0.761 0.214 0.227	1.000 0.771 0.223 0.214	1.000 0.187 0.206	1.000 0.581
STRESS1B STRESS2B STRESS3B STRESS4B HARM1B HARM2B HARM2B	Correlations STRESS1B 1.000 0.772 0.762 0.753 0.228 0.196 0.211	1.000 0.818 0.761 0.214 0.227 0.242	1.000 0.771 0.223 0.214 0.235	1.000 0.187 0.206 0.227	1.000 0.581 0.555
STRESS1B STRESS2B STRESS3B STRESS4B HARM1B HARM2B HARM2B HARM3B	Correlations STRESS1B 1.000 0.772 0.762 0.753 0.228 0.196 0.211 0.159	1.000 0.818 0.761 0.214 0.227 0.242 0.202	1.000 0.771 0.223 0.214 0.235 0.217	1.000 0.187 0.206 0.227 0.205	1.000 0.581 0.555 0.507
STRESS1B STRESS2B STRESS3B STRESS4B HARM1B HARM2B HARM2B HARM3B HARM4B	Correlations STRESS1B 1.000 0.772 0.762 0.753 0.228 0.196 0.211 0.159 0.236	1.000 0.818 0.761 0.214 0.227 0.242 0.202	1.000 0.771 0.223 0.214 0.235 0.217 0.302	1.000 0.187 0.206 0.227 0.205 0.282	1.000 0.581 0.555 0.507 0.216

- Can we say something meaningful about all the elements in the matrix
 - There are a lot of elements:

$$\frac{v(v+1)}{2}$$

- With 12 variables, the variance-covariance matrix consists of 78 elements:
 - 12 variances + 66 covariances
 - We start with 78 degrees of freedom (dfs) (think of the analogy of dollars)
- We could create a replica of this matrix but it would cost us 78 dfs
- Let create a simplified but close replica of the matrix with fewer than 78 parts in the model (i.e., model parameters)
- Each part (model parameter) costs 1df
- The more degrees of freedom left over the more parsimonious the model
- BUT there is a balance between parsimony and goodness of model fit to the original data matrix

- Let's use the following model and see how closely we can reproduce the original variance-covariance matrix of 78 elements
- There are 27 parts (parameters) in this model (we will learn how to count them)
- $78 27 = 51 \, dfs$

- How good is this model?
- The answer lies in how well we have reproduced the original variancecovariance matrix
- In other words: goodness of fit
- The RAM model in SEM is a visual representation of the algebraic equations used to reproduce the original variance-covariance matrix
- Instead of RAM, SEM can also be represented in a set of
 - Matrices (as in LISREL, the original formulation)
 - Regression equations (EQS)

• Here is our reproduced variance-covariance matrix:

DEP3B

DEP4B

	Model Estimated	del Estimated Covariances/Correlations/Res		esidual Correl	ations
	STRESS1B	STRESS2B	STRESS3B	STRESS4B	HARM1B
STRESS1B	2.949				
STRESS2B	2.236	2.859			
STRESS3B	2.335	2.413	3.100		
STRESS4B	2.150	2.222	2.320	2.900	
HARM1B	0.539	0.557	0.582	0.536	2.561
HARM2B	0.623	0.644	0.672	0.619	1.529
HARM3B	0.646	0.667	0.697	0.642	1.585
HARM4B	0.588	0.608	0.635	0.584	1.444
DEP1B	2.750	2.842	2.967	2.732	1.792
DEP2B	2.670	2.760	2.881	2.653	1.740
DEP3B	2.835	2.930	3.058	2.817	1.847
DEP4B	2.711	2.801	2.924	2.693	1.766

	Model Estimated	Covariances/	Correlations/F	Residual Correl	ations
	HARM2B	HARM3B	HARM4B	DEP1B	DEP2B
HARM2B	2.831				
HARM3B	1.831	3.100			
HARM4B	1.667	1.729	2.812		
DEP1B	2.069	2.146	1.954	36.575	
DEP2B	2.009	2.084	1.898	32.234	33.134
DEP3B	2.133	2.212	2.015	34.221	33.231
DEP4B	2.040	2.115	1.926	32.720	31.774

Model Estimated Covariances/Correlations/Residual Correlations
DEP3B DEP4B
38.327
33.732 35.752

 To see goodness of fit, we can look at deviations from the original variancecovariance matrix (also called the observed matrix) to the reproduced matrix (also called the model matrix)

DEP4B

- Original reproduced = residual
- Here is the residual matrix:

	Residuals for	Covariances/Co	rrelations/Res	idual Correlat	ions
	STRESS1B	STRESS2B	STRESS3B	STRESS4B	HARM1B
STRESS1B	0.000				
STRESS2B	0.004	0.000			
STRESS3B	-0.031	0.021	0.000		
STRESS4B	0.051	-0.031	-0.009	0.000	
HARM1B	0.085	0.020	0.043	-0.028	-0.020
HARM2B	-0.057	0.001	-0.041	-0.029	0.025
HARM3B	-0.008	0.053	0.033	0.040	-0.026
HARM4B	-0.130	-0.037	0.004	-0.001	-0.090
DEP1B	-0.300	-0.075	0.251	0.169	0.295
DEP2B	-0.398	-0.133	0.171	0.084	0.047
DEP3B	-0.420	-0.285	0.245	0.268	-0.077
DEP4B	-0.285	-0.068	0.323	0.536	-0.517

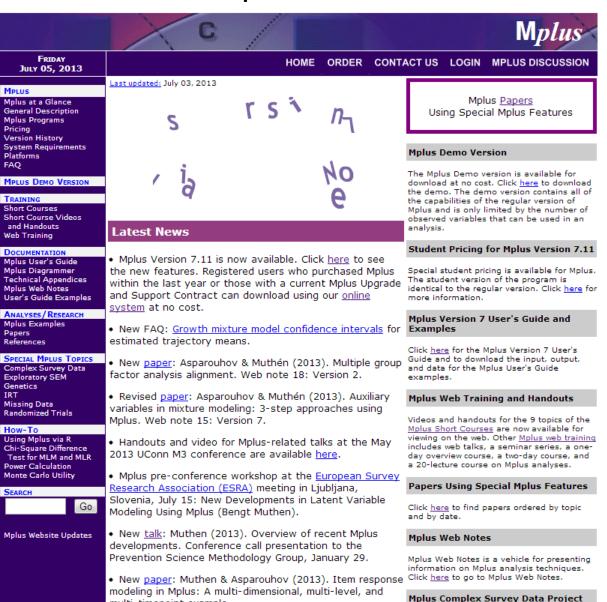
	Residuals for	Covariances/Co	rrelations/Res	sidual Correlat	cions
	HARM2B	HARM3B	HARM4B	DEP1B	DEP2B
HARM2B	-0.013				
HARM3B	-0.031	0.001			
HARM4B	-0.032	0.056	-0.007		
DEP1B	0.175	-0.329	0.339	0.000	
DEP2B	0.269	-0.496	0.359	0.211	-0.001
DEP3B	0.094	-0.076	0.384	-0.393	0.033
DEP4B	-0.155	-0.696	0.269	0.055	-0.250

Residuals	for	Covariances/Correlations/Residual	Correlations
DEP3B		DEP4B	
0.017	7		
0.377	7	0.001	

- Various indices of goodness of fit
- Some of these take into account parsimony
- Tests of significance of the parameters
- A powerful feature of SEM is the ability to compare models
- We should take this feature more seriously

Features of SEM

- SEM as combination of factor analysis and multiple linear regression
- Measurement model and structural model
- Confirmatory factor analysis vs. SEM
- Path analysis vs. SEM
- The Measurement Model
 - The common factor model (may have seen this in EFA)
 - Latent variables
 - Observed variables (e.g., the indicator variables)
 - The residuals (also called errors, uniqueness)
 - Difference between CFA and EFA
- The Structural Model
 - Exogenous and endogenous variables
 - Residuals
 - Different types of parameters

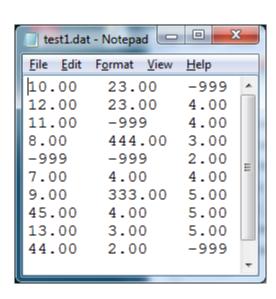

SEM and Your Future as a Researcher

- Focus on concepts and latent variables
- Construct validity and the nomological network
- Focus on processes
- How to develop a model or a theory
 - Theory construction and model building skills (Jaccard & Jacoby, 2010)
 - My application of their 26 heuristics to Intrinsic Motivation:

http://publish.uwo.ca/~ptrembla/heuristics-revised.pdf

- a few examples:
 - analyzing your own experiences
 - case studies
 - participant observation
 - Your grandmother isn't always right

Mplus Website

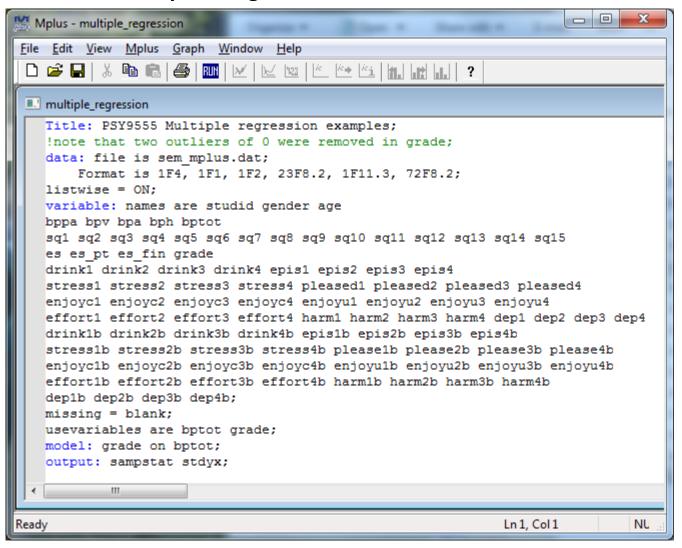

multi timonoint avamala

Mplus Basic Syntax

Ten basic commands (with sub-commands) Most common: TITLE: DATA: **VARIABLE: MODEL:** Others: **DEFINE: ANALYSIS: OUTPUT**: SAVEDATA: PLOT: **MONTECARLO:**

Free Format Data File Specification in Mplus

```
DATA:
file is test1.dat;
VARIABLE:
names are v1 v2 v3;
missing all (-999);
```

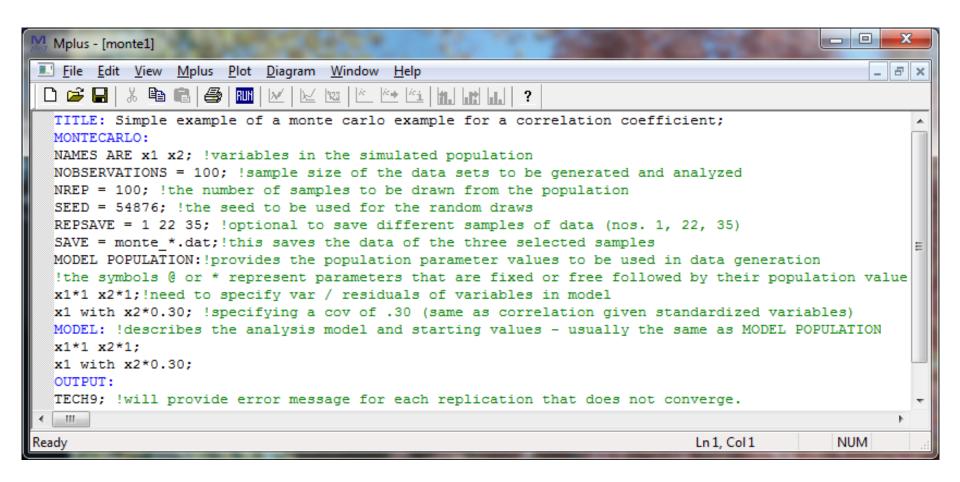


Fixed Format Data File Specification in Mplus

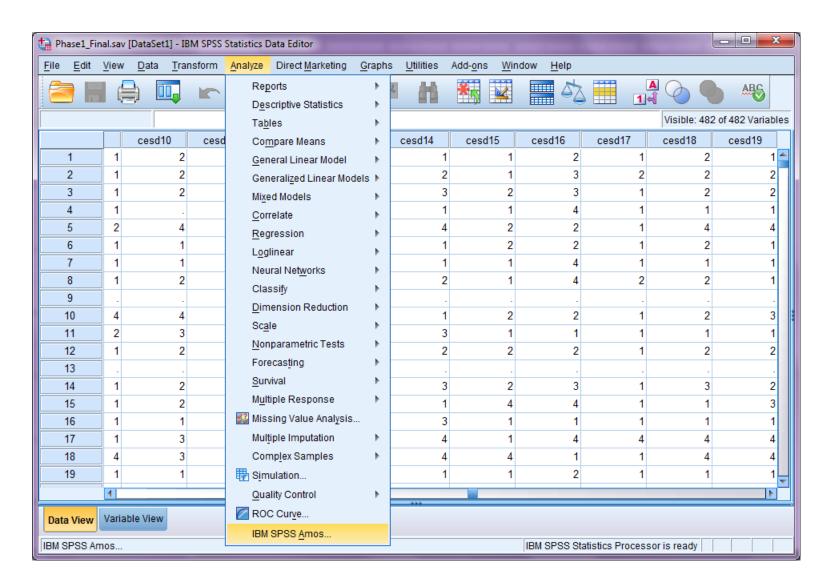
```
data: File is vignette.dat;
    Format is 21F8.2;
variable: names are clust gender age
everdr intox days12 daysse avgdr12 avgdrse smoke
bp_PA bp_V bp_A bp_H bp_tot AE_TR AE_LC AE_CB AE_RA
uni_num program2;
missing = blank;
```

vignette.dat - No	otepad									X
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat	<u>V</u> iew <u>H</u> e	lp								
1.00	.00	18.00	.00						1.00	1: ^
1.00	.00	20.00	.00						1.00	
1.00	.00	28.00								1
1.00	.00	18.00	.00						1.00	1:
1.00	.00	22.00	1.00	1.00	5.00	5.00	8.00	10.00	2.00	3
1.00	.00	18.00	1.00		2.50	5.00	3.00	4.00	3.00	2.
1.00	.00	26.00	1.00	1.00	2.50	5.00	6.00	6.00	3.00	1.
1.00	.00	18.00		1.00	2.50	2.50	4.00	4.00	1.00	2:
1.00	.00	24.00	1.00	1.00	5.00	2.50	3.00	3.00	3.00	
1.00	.00	18.00	1.00	1.00	.50	2.50	1.00	3.00	1.00	1:
1.00	.00	26.00	1.00	1.00	2.50	2.50	4.00	5.00	3.00	1
1.00	.00	21.00	1.00	1.00	2.50	2.50	6.00	5.00	1.00	
1.00	.00	22.00	1.00	1.00	.50	1.00	4.00	2.00	1.00	1
1.00	.00	30.00	1.00	1.00	1.00	1.00	8.00	4.00	3.00	1:
1.00	.00	20.00	1.00	1.00	1.00	1.00	6.00	7.00	1.00	
1.00	.00	25.00	1.00	1.00	2.50	1.00	4.00	4.00	1.00	3:
1.00	.00	19.00	1.00	1.00	.50	1.00	4.00	6.00	1.00	1
1.00	.00	21.00	1.00	1.00	2.50	1.00	4.00	2.00	1.00	1
1.00	.00	20.00	1.00	1.00	1.00	1.00	4.00	4.00	1.00	٠.
4		III								- 1

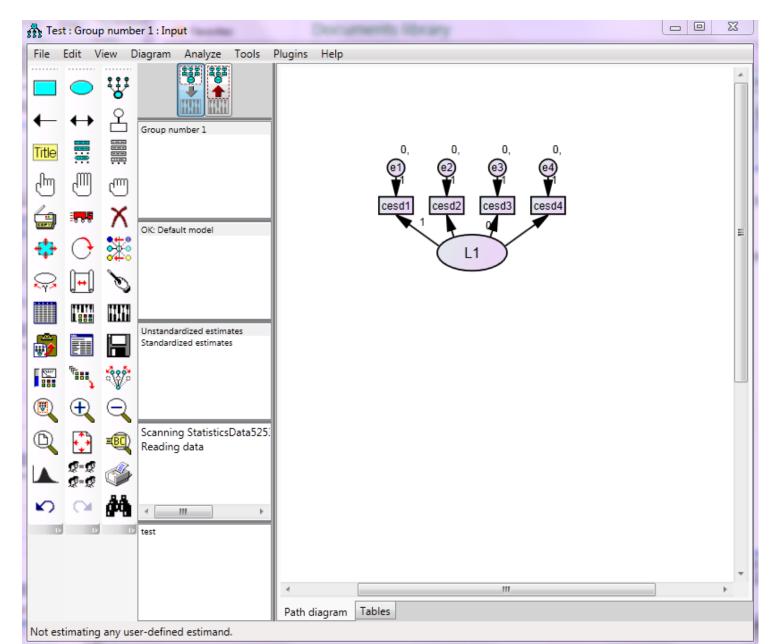
Mplus: Regression – One Predictor


Mplus: Regression – One Predictor

SAMPLE ST	ATISTICS		MODEL RESULTS				
SAME	LE STATISTICS			Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
			GRADE ON				
	Means	D.D.M.O.M.	BPTOT	-0.078	0.029	-2.672	0.008
	GRADE	BPTOT	Intercepts				
1	74.698	59.829	GRADE	79.387	1.828	43.425	0.000
			Residual Varian	ces			
	Covariances		GRADE	92.330	6.960	13.266	0.000
	GRADE	BPTOT					
GRADE	94.201		STANDARDIZED MOD	EL RESULTS			
BPTOT	-23.893	304.857					
			STDYX Standardiz	ation			
	Correlations						m m111
	GRADE	BPTOT		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
GRADE	1.000						
BPTOT	-0.141	1.000	GRADE ON	0 141	0.050	2 600	0.007
			BPTOT	-0.141	0.052	-2.699	0.007
			Intercepts				
			GRADE	8.179	0.329	24.831	0.000
			Residual Varian	ces			
			GRADE	0.980	0.015	66.535	0.000


Mplus: Regression – One Predictor MLR (Maximum Likelihood Robust)

```
usevariables are bptot grade;
analysis:
estimator = mlr;
model: grade on bptot;
output: sampstat stdyx;
                                  MODEL RESULTS
                                                                                    Two-Tailed
                                                     Estimate
                                                                   S.E. Est./S.E.
                                                                                      P-Value
                                   GRADE
                                            ON
                                      BPTOT
                                                       -0.078
                                                                   0.032
                                                                            -2.476
                                                                                        0.013
                                   Intercepts
                                                                   1.865
                                      GRADE
                                                       79.387
                                                                            42.556
                                                                                        0.000
                                   Residual Variances
                                      GRADE
                                                       92.330
                                                                   9.062
                                                                            10.189
                                                                                        0.000
                                  STANDARDIZED MODEL RESULTS
                                  STDYX Standardization
                                                                                    Two-Tailed
                                                     Estimate
                                                                    S.E. Est./S.E.
                                                                                      P-Value
                                   GRADE
                                            ON
                                                                            -2.522
                                      BPTOT
                                                       -0.141
                                                                   0.056
                                                                                        0.012
                                   Intercepts
                                                        8.179
                                                                   0.421
                                                                            19.444
                                      GRADE
                                                                                        0.000
                                   Residual Variances
                                                        0.980
                                                                   0.016
                                                                            62.179
                                                                                        0.000
                                      GRADE
```


MONTECARLO in Mplus and Power Example : A Correlation between two variables

AMOS in SPSS

AMOS

lavaan (latent variable analysis) in R

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 2, http://www.jstatsoft.org/v48/i02

http://lavaan.org/

If you are new to R and want to start with the help of a menu driven environment (GUI; Graphic User Interface), you can download the Rcommander (John Fox). See http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/