Applied Math 261b-Scientific Computing
 Final Exam
 Department of Applied Mathematics The University of Western Ontario

Professor R. M. Corless
Saturday, April 24, 1999
9:00am-12:00 noon

Put your name and student number on your exam booklet(s). All questions are of equal weight. A marking scheme for each sub-question is indicated in square brackets. Textbooks, notes, calculators, and palmtop computers are allowed. Do questions 1, 2, 3, and ONE of 4 or 5.

PLACE YOUR ANSWERS IN YOUR EXAM BOOKLET. THE EXTRA SPACE ON THIS EXAM SHEET MAY BE USED FOR SCRAP PAPER.

1. (The SVD $\left.A=U \Sigma V^{T}\right)$.
(a) [15 marks] You have computed the SVD of the 4 by 4 Hilbert matrix H, with $h_{i j}=1 /(i+j-1)$, by using Matlab:
```
>> format long
>> a = hilb(4)
a =
\begin{tabular}{lllll}
1.00000000000000 & 0.50000000000000 & 0.33333333333333 & 0.25000000000000 \\
0.50000000000000 & 0.33333333333333 & 0.25000000000000 & 0.20000000000000 \\
0.33333333333333 & 0.25000000000000 & 0.20000000000000 & 0.16666666666667 \\
0.25000000000000 & 0.20000000000000 & 0.16666666666667 & 0.14285714285714
\end{tabular}
>> [u s v] = svd( a )
u =
\begin{tabular}{rrrr}
0.79260829116376 & -0.58207569949724 & 0.17918629053545 & -0.02919332316479 \\
0.45192312090160 & 0.37050218506709 & -0.74191779062845 & 0.32871205576319 \\
0.32241639858183 & 0.50957863450180 & 0.10022813694719 & -0.79141114583313 \\
0.25216116968824 & 0.51404827222216 & 0.63828252819361 & 0.51455274999715
\end{tabular}
s =
\begin{tabular}{rrrr}
1.50021428005924 & 0 & 0 & 0 \\
0 & 0.16914122022145 & 0 & 0 \\
0 & 0 & 0.00673827360576 & 0 \\
0 & 0 & 0 & 0.00009670230402
\end{tabular}
v =
\begin{tabular}{rrrr}
0.79260829116376 & -0.58207569949724 & 0.17918629053545 & -0.02919332316479 \\
0.45192312090160 & 0.37050218506709 & -0.74191779062845 & 0.32871205576319 \\
0.32241639858182 & 0.50957863450180 & 0.10022813694719 & -0.79141114583313 \\
0.25216116968824 & 0.51404827222216 & 0.63828252819361 & 0.51455274999715
\end{tabular}
```

Use this factorization to compute the solution to $H x=[1,0,0,0]^{\prime}$. Show your work. Check your work by explicitly computing the residual. Remember that U and V are orthogonal.
(b) [10 marks] What is the condition number of H, and what is the estimated error in x ?
2. Compute the condition number of the roots of the following equations. Assume that we are solving for x, and we are interested in the changes in x caused by changes in the parameter(s) a.
(a) [10 marks] $x^{2}+2 x+a=0$.
(b) $[5$ marks $] x^{5}+2 x+a=0$.
(c) [5 marks] $x^{2}-2 x+1+a=0$ near $a=0$. What goes wrong with the idea of condition number analysis, here?
(d) [5 marks] $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$. Here we want a generalization of the notion of "condition number" which reflects the fact that any or all of the coefficients may change at once. Remember the chain rule for multivariate differentials: if $y=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ then $\Delta y=f_{1} \Delta x_{1}+f_{2} \Delta x_{2}+\cdots+f_{k} \Delta x_{k}$ where $f_{k}=\partial f / \partial x_{k}$.
3. (Least squares, and matrix recognition)
(a) [15 marks] Convert the following linear least squares problem into a matrix formulation (that is, give the 5×2 matrix A and the right-hand side b so that the problem can be written as minimize r where $r=b-A x$.)

$$
\begin{equation*}
\operatorname{minimize} \sum_{k=1}^{5}\left(y_{k}-x_{1} t_{k}-x_{2}\left(2 t_{k}^{2}-1\right)\right)^{2} \tag{1}
\end{equation*}
$$

The data $\left(t_{k}, y_{k}\right)$ is given below, for $1 \leq k \leq 5$.

t	y
-2	0
-1	0
0	1
1	0
2	4

(b) [10 marks] Explain in a short paragraph how one can use the the $Q R$ factorization or the SVD $\left(A=U \Sigma V^{T}\right)$ to solve the least-squares problem $A x=b$.

Do Either Question 4 or Question 5, but not Both.

4. (Newton-Cotes Integration Formulae)
(a) [15 marks] Your "frammistat" sensor takes readings of the "frammistat" level in your experiment at the start of a time interval, then at 68% of the time interval, and finally again at the end of that interval. You wish to find a good formula for the integral of the frammistat level, and you settle on a closed Newton-cotes type formula. By making your formula exact for constant frammistat levels, i.e. $f(t)=1$ on $0 \leq t \leq h$, and also exact for $f(t)=t$ and $f(t)=t^{2}$, set up the equations that determine the weights in your Newton-Cotes type formula for

$$
\int_{0}^{h} f(t) d t \approx w_{0} f(0)+w_{0.68} f(0.68 h)+w_{1} f(h)
$$

(b) [10 marks]. You get a new frammistat sensor, that can sample at any 3 points in the interval. What sample points should you choose for maximum accuracy in the computation of the average frammistat level (remember that the average is just $\left.\left(\int_{0}^{h} f(t) d t\right) / h\right)$? Justify your choice. Would your choice change if you were doing experiments on a continuous sequence of time intervals (that is, a whole collection of intervals one after the other, at times $0, h, 2 h, 3 h$, etc)?

Do Either Question 4 or Question 5, but not Both.

5. (Taylor series methods and Runge-Kutta methods for solving Initial Value Problems.)
(a) [15 marks] Carry out two steps of the 2 nd order Taylor series method to solve $x^{\prime}=\cos (\pi t x)$, starting with $x(0)=1$ and a step size of $h=0.01$. Show your work by filling in the following table. The final column is for the residual $\hat{x}^{\prime}-\cos (\pi t \hat{x})$, where \hat{x} is your piecewise polynomial computed by Taylor series on each interval.

t	x	x^{\prime}	$x^{\prime \prime}$	residual
0	1			
0.01				
0.02				

(b) [10 marks] Is the following implicit Runge-Kutta method at least of 2nd order?

$$
\begin{aligned}
k_{1} & =f\left(x_{n}+\frac{h}{2} k_{1}\right) \\
x_{n+1} & =x_{n}+h k_{1}
\end{aligned}
$$

Hint: use the same kind of analysis as in equation 9.2 .2 on page 320 of your text.

