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Abstract:

A review is presented of the quantization procedures applicable to linear gravitational fields in Minkowski space—time and of

various interaction processes involving gravitons. The discussion is mainly concerned with those processes that in the Feynman

diagrammatic approach involve gravitons on external lines and are of particular astrophysical interest because of their contribution

to background gravitational radiation in the universe. More specifically they are graviton production from particle—antiparticle

annihilation, gravitational bremsstrahlung, scattering of gravitons and photoproduction. Among the topics discussed are also, the

graviton—particle vertex and some of its applications, and the problem of coherent emission of gravitational radiation in the

laboratory.

1. Introduction

Although an extremely satisfactory classical description of gravitation exists, its complete quanti-

zation has so far defied every attempt. Einstein’s general theory of relativity does in fact present
from the point of view of quantum field theory, a variety of mathematical difficulties. These arise

chiefly from the non-linearity of the field equations, the presence of a complicated gauge group,
constraints in the initial value formulation of the theory, and the loss of the Poincare group so
important to particle physicists (Ashtekar and Geroch [1], DeWitt [22]). The probable discovery
of sources of strong gravitational fields such as black holes may have made the problem of the
complete quantization of the gravitational field even more acute, as astrophysical observations
require quantitative predictions which are difficult to make on the basis of a still non existing theory.

Strong gravitational fields, no matter how important and interesting, do not however encompass

the whole realm of quantum phenomena where gravitation plays a role. Weak gravitational sources
are indeed very numerous in our universe and are most readily available to us in the laboratory.
The linearized general theory of relativity is adequate to deal with these sources, can be quantized

consistently in a number of ways and the interactions of the quanta of the field, the gravitons,
with other particles can be studied.

Most of these interactions have an interest in themselves and serve to ascertain in a clearer way,

the significance and role of gravitation in physics. The study of gravitation would certainly not be
complete without their consideration. Some processes, however, have a direct astrophysical interest.
Bremsstrahlung, for instance, and photoproduction do generate sizeable amounts of gravitational

radiation (GR) which can be comparable in magnitude with those of classical processes. All pro-
cesses, then contribute to the creation of a background of gravitational radiation in the universe.
This vast and as yet untapped source of information has great cosmological and astrophysical in-

terest. In fact, because of the extreme weakness of their interactions gravitons are almost unab-
sorbable and could therefore convey to us information about the various evolutionary stages of the
universe. With only a few exceptions, dictated mainly by the nature of the particular problem at
hand, the processes considered in this article are linear. Thus, problems such as the fall of matter
down a black hole (Zerilli [93], Davis, Ruffini, Press and Price [161), the radiation due to the
collision of two non-rotating black holes (Hawking [401), the stimulated or spontaneous emission
from rotating black holes (Unruh [76], Hawking [411) and several other interesting problems for
which the linearized theory is not adequate, do not fall within the scope of this review.

Most of the linear processes that have so far been studied in the literature are here reviewed

and presented in as self contained a way as possible. Much work has been produced in this field
in the late sixties that still lies scattered over numerous journals. Hence the desirability of a review
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which may help to reassess the role of these processes in astrophysics. This role has, sometimes and
in our opinion unwarrantedly, been played down in the literature.

Although no real attempt is made to estimate the overall background of GR in the universe,
which would obviously be of considerable astrophysical significance, linear processes can be dis-
tinctly singled out that contribute to the increase or, conversely, the decrease of GR in the universe
and to the life and evolution of astrophysical objects. It is found, in particular, that high coherence
can compensate, within limits, for the weakness of certain sources. From this point of view the
problem of highly organized matter has indeed been barely discussed in the literature.

2. Quantization of linear gravitational fields

Quantization theories for linear gravitational fields have been proposed in the past by Rosenfeld
[70] and Pauli and Fierz [28]. More recently, the problem of quantizing the linearized version of
the general theory of relativity has been tackled along different lines by several authors with similar
results. Worth of particular attention among the quantization procedures is the functional integrals
method developed by DeWitt [21] and Fadeev and Popov [26] which is here only mentioned.
Although we essentially follow in this article the approach of Gupta [33], the approach of Weinberg
is also reported in some detail. Also interesting is the path dependent formalism of Mandelstam

[521 because of its connection with the theory of gauge fields. In Mandelstam’s approach any
reference to a coordinate system is avoided and unphysical variables like the metric tensor g1~~need
not be mentioned as curvature is directly introduced from the very beginning. The quantization of

curvature implies that space—time can no longer be viewed as consisting of a four dimensional in-
finity of points. Hence the results of measurements in quantum theory are no longer path indepen-
dent. Again the first order perturbation calculations give results equivalent to those of flat space
theories.

The question of renormalization is not dealt with in this paper. It is known that in the case of
pure gravitational fields all one-loop divergencies can be eliminated by a field renormalization

(‘t Hooft and Veltman [74], DeWitt [211). This is no longer the case as soon as gravitons interact
with other particles (‘t Hooft and Veltman [74], Deser and van Nieuwenhuizen [17—20]), with
the exception of external off-mass shell gravitons which when added to a flat space renormalizable
process leave it finite (van Nieuwenhuizen [771). It is implicitly hoped that the lower order terms
of perturbation theory are valid for most processes considered.

2. 1. The linear approximation

Einstein’s equations can be written in the form

~ — = !~<2~ (2.1)

where R~0is the Ricci tensor, ~ the metric tensor, R R~,i~= ‘~Jl6irG, G the gravitational con-
stant and T,.LV the energy momentum tensor of the “matter field”. Matter here includes everything
except the gravitational field.

‘y°~~is defined as the energy momentum tensor density for the matter field

= T0P~[~~. (2.2)
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The covariant divergence of R1~~— ~g,2~Rvanishes. It therefore follows that the divergence of

too vanishes:

— ~jr’~ag~p = 0, (2.3)

(2.4)

af

t~ is the pseudo tensor of the gravitational field and

at~/ax~= —~r°~ag~/ax~. (2.5)

The linear approximation is defined by expanding the metric tensor and keeping only the first

order terms

= + i~h~ (2.6)

where is the Minkowski metric. It follows that

a
2h a2h a~hx

D2h~ (ax~a~+ ax~a~)+ ax~a~+ ~(ax~~— ~2~) = KTpv , (2.7)

~ T~’ (28)
ax~ 2ax~

By using the de Donder—Lanczos condition

— ~ah~/axM = 0 (2.9)

one obtains from (2.7)

D2h~~— ~ = ~ . (2.10)

By defining

h ‘6 ~ 211~zv ‘Y~v2 ,.~v”YX

and using (2.10) and (2.11) one gets

D2’y~~KT~~; ~‘y~p/axv0 (2.12)

—~ ~ ~ax 2a~ 4a’~I) ~.L

! ‘YXP aYXP 1 a
7~a’y~ ~ (a’fxp a~1 1 a7X ~ (2 13

~ 2 — — 2 ,.iv — 2 ax0 . )

Hence the Hamiltonian density can be written as:

c?~=±[__~ -_J~+!--~_L_I--1 (214
2L at at 2 at at 2 ax0 ax0 4ax0 ax0]~
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It also follows from (2.1 2) that

02 a7~~/ax~= ~ aT~/ax~ D~a~~/ax~= 0. (2.15)

The two equations agree only in the first approximation. However, for the exact non linear
gravitational field the supplementary conditions are exactly compatible with the field equations.

2.2. The quantization scheme of Gupta

The Lagrangian density is constructed as a function of the independent variables and ‘y

E =_!(~2~~ (216)
4\ ax~ ax~ 2 ax~ax~

Thus the field equations are:

D
2’y,

2~”0; D270 (2.17)

and the Hamiltonian density becomes

~=ll~i~fI+!ñ L~i1 (218)
2 L at at 2 at at 2 ax~ ax~ 4 ax~ax~j

Equation (2.18) will be reconciled with (2.14) by choosing the supplementary conditions in such
a way that the expectation values of ‘y and coincide. In terms of ~‘s, we have

— aL _1 ~Yii 219
11 a(a711/at) 2 at

and the commutation relations are:

[‘y11(r, t), I1~,(r’, t)] = i6(r’ — r) (2.20)

[7ii(r~ t), ~1(r~ t)] = 2i6(r’ —r) (2.21)

[‘y~(x), ‘y,1 (x’)] = 2iD(x — x’), (2.22)

where

D(x — x’) — 2i ~ fdk’ expf—ik’(x — x’)} (2.23)
(2ir)

4 P-~O k’2 + p2

is the singular function for the gravitational field. Since ‘Y

12 = 721 and 1112 = aL/a(a712/at), the
following commutation relation also holds:

[y12(x), 712(x’)] = iD(x — x’) (2.24)
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and, more in general

[7Mv(x), y~~(x’)]= i(6~~6~~+
6~sp6vX)D(x — x’) (2.25)

[7(x), 7(x’)] = —4iD(x — x’). (2.26)

and ~ are then expanded into plane waves in the form

~ ~ wt)} +a~~(k)exp~—i(k~r—wt)}} (2.27)

= ~ 2~ {a(k) exp{i(k.r — wt)} +a~(k)exp{—i(k~r— wt)} }. (2.28)

Substitution of the above two equations into (2.24) and (2.25) gives:

[aMP(k),a~~(k)]= V6Vp + 6!2P6VX (2.29)

[a(k),a~(k)] = —1 . (2.30)

Use of the last six equations in the Hamiltonian density and omission of the zero point energy give

the Hamiltonian of the gravitational field:

f~dv ~ ~ . (2.31)

The following four operators are defined for convenience:

a’~
1(k)~(a11(k)—a22(k)); a~2(k)~(a11(k)+a22(k))

1 1 (2.32)

a’33(k) a33(k) ; a~(k)= a®(k).

They obey the commutation rules

[a~1(k), a’~(k)] = 1; [a’22(k),a~(k)] = 1
(2.33)

[a’33(k), a’~(k)1 = 1; [a~,(k), a~(k)] = 1

The Hamiltonian can then be written as:

fcxdv ~ k {a’~a”+a~a
221+a~a’33+a~a’°°—a~a

+ a~
2a

12+ a~
3a

23+ a~
1a

31 — a~
0a’°— a~0a

2°— a~a30}. (2.34)

There are therefore eleven types of gravitons corresponding to eleven independent components
of ‘y,~,and ~. Since the commutators involving a

10(k) and a(k) have a negative sign it is convenient
to use an indefinite metric in dealing with the components 7i~and ~.
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2.3. The supplementary conditions

Because of the introduction of an indefinite metric, any state ‘P is normalised as

= (
1)nlO+n20+n30+n (2.35)

where n10, n20, n30 and n are the occupation numbers of the a10-, a20-, a30- and a- gravitons.
The supplementary conditions

a7~
-~---~‘P0; (y~—7~)’P0 (2.36)

where and 7~are the positive frequency parts of
7Mv and ~, now determine the allowable wave

functions q that describe the state of the gravitational field and ensure in particular that

0 ; (7~~)= (7) . (2.37)

Substitution of the Fourier expansions of in (2.36) and the choice of k along the x
3 axis

gives:

(a3~(k)—a01(k))’P0; i 1,2 (2.38)

(a33 (k) — a00 (k)) ‘I’ = 0 ; (~/~a~3(k) — a03 (k))’P = 0 (2.39)

(a30(k) — a00 (k)) ‘I’ = 0 ; (a30(k) — \/~i~0(k))‘P = 0. (2.40)

These equations eliminate states in which a31 and a01 gravitons are present in the absence of inter-
action. Also from equations (2.36) and the Fourier expansions of and 7, one obtains

(a~(k)— 2a(k)) ‘P = 0, (a’22(k) — a(k))’P = 0 (2.41)

which imply the absence of a2- and a-gravitons in a pure gravitational field. Hence, the supplemen-
tary conditions eliminate 9 types of gravitons for a pure gravitational field:

n23 = = = n02 = n03 = n22 = n33 = n00 = n = 0 (2.42)

while the occurrence of negative probabilities in real states as predicted by eq. (2.36) is prevented.
Only gravitons of the types a,2 and a,1 can exist and the vacuum state may be defined as that

containing no a12 and a11 gravitons. Since all the components of and y~contain absorption
operators, the vacuum state ‘P0 satisfies the equations:

= 0 ; y~’P0= 0. (2.43)

The only non vanishing component of the spin operator is then

~ 2[a~(k)a÷(()—at(k)a_(k)] “2~I~(n~(k)—n_(k)) (2.44)

where n÷and n are the numbers of gravitons corresponding to the operators a÷(k)and ajk).
Equation (2.44) shows that gravitons are particles of spin 2 with two independent spin states
corresponding to spin axis parallel or antiparallel to the direction of motion.
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2.4. The gravitational field in interaction

The interaction of the gravitational field with matter is represented by the Lagrangian density:

1 / a7~~a7’~ 1 a7 a7 K
.12 = — ~-~.---— -s-—- —-~-~:.) ~ — 2&~07)T. (2.45)

The above equation gives rise to the field equations:

o27,2v = KT~~; D
2’y~= KT~. (2.46)

The supplementary conditions are modified in the Heisenberg representation to:

[a
7~~/ax~]‘P = 0 (2.47)

— ~ ‘I’ = 0 (2.48)

where [ ]~denotes the positive frequency part. In the absence of interaction they are indentical

to the previous conditions given in (2.37). The terms a7~~/ax~and (‘,‘~— 7) can be split into posi-
tive and negative frequency parts in the presence of interaction in the Heisenberg representation.

Also the following equations hold:

o
2a

7~0/ax~= 0 (2.49)

o2(7,~ —7)=0. (2.50)

Passing from the Heisenberg representation to the interaction representation, the following equations
are obtained:

[a7~~/ax~+ K fD~(x’— x) T0~(x’)dv] ‘P(t) = 0 (2.51)

~ — 7~)”P= 0. (2.52)

D~(x— x’) is the positive frequency part of D(x — x’). Those gravitons which could not exist in a
pure gravitational field can now appear in virtual states in the presence of interaction due to the

T0~term. The whole theory is Lorentz invariant.
In particular, the field equations for the electromagnetic field are given by:

a9~~/axv= _p
12 (2.53)

a.~‘2/ax’2 = 0, ~‘2V = ~/EiFPV (2.54)

F’2V = aA~/ax’2— aA’2/ax~ g’2XgVPF~ (2.55)

p’2~/TjJM . (2.56)

The total Lagrangian density of the gravitational and electromagnetic fields may then be split into
two parts

2tot = .12+ ER (2.57)
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and

ER = —~ ~ ~J’2~~ —~ v~g’~g~~ (2.58)

which, by using the Lorentz condition aAo/axa = 0, becomes

ER = _~T’2v9~~ — ~K70~(F0’2F~— ~ . (2.59)

The first order interaction term is given by

(2.60)

where T’-”~is the usual flat space energy-momentum tensor of the electromagnetic field.

2.5. Weinberg’s theory of massless particles

Linear gravitational fields can also be quantized by means of Weinberg’s “physical particles only”
approach [85—87]. In this approach particles are defined as the irreducible representations of the

inhomogeneous Lorentz group and play a more fundamental role than fields since particle operators
enter the interaction in the form of free fields which transform according to various representations
of the homogeneous Lorentz group and commute with each other at spacelike separations. The S

matrix is Lorentz invariant and the Feynman rules for gravitons (and photons) can be obtained.
In order to account for the inverse square law forces, potentials are introduced which a priori may
not be invariant. Thereby, the Lorentz invariance of the S matrix becomes a difficult requirement
to satisfy. The salient feature of the formalism is that for massless particle of spin / 2, the only
Lorentz invariant theory is just that of Einstein. With an exactly conserved current, in the weak

field limit, the field equations reduce to those derived by Gupta. Weinberg’s approach is here
presented with a view to illustrate how the gulf between the theory of massless particles and the
rest of particle physics could possibly be bridged.

2.5.1. The fields
Weinberg shows that in the perturbation theory for massive particles of any spin, the amplitudes

for emission or absorption of a particle with spin / vanishes necessarily as p1~i

2 for momentum
p -* 0 when m -~ 0.

The necessity to avoid this difficulty which would make the existence of inverse square laws
impossible leads to the introduction of potentials whose /th derivatives give the fields. For sim-
plicity, the fields for particles of spin / are chosen to be transformed under the (2/ + 1) dimen-

sional representations (/ 0) and (0/) of the homogeneous Lorentz group. They are indicated by
Ø

0(x) and x0(x) respectively and can be written as tensors F_(x) and F1.(x) of rank 2/as follows:

F~’2’~i 1 [‘221/21.~ = (2ir) 3/2 ~+i ~ d
3 ~ [p’2’e~’(p) — p1/’ e~’(p)]

- (21p1)112

[p’2ie~i(p)— Vj’2f()] [a(p, ±j)eiPx + b*(p, ~/)e~] . (2.61)

b* is the antiparticle creation operator, a is the particle annihilation operator, b is the antiparticle
annihilation operator, a* is the particle creation operator.

Therefore, F_ (x) and F÷(x)are just linear combinations of ~(x) and x(x) and vice versa. The
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polarization vectors e~(p)in (2.61) are defined as

e~(p)= R~(~)e~ (2.62)

e~= l/\/~ e~= ±i/~JT; e4
3 e2 =0. (2.63)

R~(p)is a pure rotation that carries the z-axis into the direction of p.
i) F~(x)each have not more than (2/ + 1) linearly independent components.

ii) F÷(x)actually are tensors, that is, they transform as:

U(A)F~’2’~””2i’1’U’(A) = A~1A~i~ (Ax) . (2.64)

A~is a proper orthochronous Lorentz transformation. The corresponding unitary operator is U(A)
while U’(A) is its inverse. Also

A~A~= . (2.65)

The U(A) forms an infinite dimensional (and reducible) unitary, representation of the Inhomoge-
neous Lorentz Group:

U(A, ~) U(A, a) = U(AA, Aa ÷~)

U(A) U(A) = U(AA). (2.66)

Therefore, from (2.64), F~transforms according to some reducible or irreducible representation
of the homogeneous Lorentz group. The most general representation that can be constructed from
a(p, +/) exp(ip~x)+ b~(p,—/) exp(—ip . x) is a sum of representations of type

F÷: (0,j)(L/+~)(1,/+ 1)... (2.67)

while the most general representation that can be constructed from a(p, —/) exp(ip . x)

+ b~(p,+1) exp(ip . x) is a sum of

F : (/, 0) (j + ~) (I + 1, 1)... (2.68)

as has been shown by Weinberg.
The only way such sums can have dimensionality ‘~ 2/ + 1 is for them to consist just of the first

terms (0, /) and (1, 0). The representation determines the fields uniquely, so F.
4. must be x and F

must be 0.
The following properties of F~are mentioned to number the components of F~:

1) The F~‘s are symmetric under interchange of any two index pairs,
2) Antisymmetric under interchange of indices within a pair,
3) They are either self-dual or anti-self-dual within each index pair,

4) The complete trace on any two index pairs vanishes.
The conditions of antisymmetry and self duality or antiself-duality lower the number of indepen-

dent components for each index pair from 16 to 6 to 3. The conditions ito 3 would give F~(x)

the same number of components as for a symmetric tensor in 3 dimensions, i.e.,

~ (2.69)
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Condition 4 imposes N
1_2 constraints. Therefore, the number of independent components left

is not greater than 2/ + I,

N1 — N1_2 ~ 2/ + 1 . (2.70)

The proof that the F~(x) are tensors, is contained in Weinberg’s article [87] . The fields F~(x) obey
the free field equations

D
2F~’2i~il”(x)=0 (2.71)

a~F~1’2i~’1”(x)=0. (2.72)

For I = 1, (2.61) gives two of Maxwell’s equations. The five independent components of F~’2°~I X77]
are identified with the left or right handed parts of the source-free Riemann—Christoffel tensor.

The potentials can now be introduced and are found to be suitable to formulate a theory of
photons and gravitons. The potentials are not tensors and their transformation properties are shown
in the next subsection. The S matrix follows as a natural consequence of the introduction of the
potentials and the current operator in the interaction representation as shown in subsection 2.5.3.

The transformation of the S matrix follows from the Lorentz transformation rule for one par-

ticle states and the imposition of two conditions on the current operator in the Heisenberg represen-
tation.

2.5.2. The potentials
The tensor fields F~(x)are the /th derivatives of the potentials as can be seen from (2.61),

A~’’2I(x)= f P e~1(p) ... e~i(p)[a(p, ±j)eiPx+ (~_i)jb*(p,~j)e~i~~x](2.73)
(2ir)3/2 (21p1)112

F~’2’~1(x) = a’2A~÷(x)— a1/A~(x) (2.74)

F+1’2~1‘~1(x) a’2axA~Y~(x)— a’2a~A~~’(x)— a1/a~A+’2x(x)+ a~a~A~’(x)+ a~a~A~’(x). (2.75)

Since A~are free of the objectionable factors pI, they can be used to construct a theory of photons
and gravitons. The A~(x) cannot be tensors, because the traceless part of a symmetric tensor of
rank / transforms according to the (//2, //2) representation of the homogeneous Lorentz group
and this is not one of the representations (2.67) and (2.68) allowed for massless particles of helicity
X = ±/.Also,A~vanishes ifany of its indices is = 0, a property hardly admissible for a tensor. The

potentials therefore transform in the following way:

U(A)A~’”’2i(x)U’(A) = A~1... A~(2~y3/2~ d3p [e~1 (p) — pV1f~(p, A)] M (2.76)

1 / (21p1)”2

M [e~i(p) — p1/ff±(p, A)] [a(p, ±1)exp(ip . Ax) + (—1)~b*(p, ÷j)exp(—ip Ax)] . (2.77)

Equation (2.76) can be expressed in a more compact form as:

U(A)A~’’2i(x)U-1(A)= A~’... A~/A~’~i(Ax)+ ~a’2rO~1’2r-1Mr÷1~’2i(x
1A). (2.78)
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The second term on the right-hand side of the above equation denotes the gradient terms and the
A~are tensors except for gradient terms. Since the photon and graviton are their own antiparticles,
it is convenient to restrict any further discussion to purely neutral particles and define phases such

that

b(p, ±/)= (—1)~a(p, ±1). (2.79)

Then

(2.80)

Therefore, Hermitian fields can be defined such that

A’21.’2i(x)A+’21”~’2i(x)+A~ñ1~”’2i(x)

= (2~3/2 j d3p ~e~1~) ... e~J(p)[a(p, ±j)e~ +a*(p, ~j)ex] (2.81)
(2~pI)”2

B’2’”’2/(x) = —iA’2÷’”~’2i(x)+ L4M1~’2J(x)

= — i d~p ~ (±)e~1(p)... e~(p)[a(p, ±j)eiP~+a*(p, ;f)~iP~x] (2.82)

(2ir)312 (21p1)112 ± —

with A carrying intrinsic parity (—1 )/, while B has intrinsic parity --(—1 )“ . A’2 and A’21/ can there-
fore couple to normal tensors like the electric current and energy momentum tensor, while the B’s
have to couple to tensors of abnormal parity, like the current of magnetic monopoles.

2.5.3. Lorentz invariance and current conservation

The space like components of the current operator in the interaction representation are defined
by

= —t5H’(x°)/5A”.t/(x). (2.83)
From the potentials (2.73) it can be seen that the S matrix for emission of a particle with m = 0,
helicity ±j,and momentum p in a transition c~-~ ~3is

S~
0(p,±J)____ 1 e~(p)...e~(p)fd4xe’P~ ~ (—1)

(2ir)
312 (21p1)112 n0 fl.

X f dt
1 ... dt~(bIT{H’(t1)... H’(t~)g~1(x)}Ia). (2.84)

The above S matrix can be expressed in terms of exact energy eigen states and Heisenberg represen-

tation operators as

Spa(P,±/) 1 1 ~ (2.85)
(2ir)

312 (21p1)112
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= J’d4x e_ht~x(boutIg~
11(x)Ia in) (2.86)

gH (x) = e~~~tg(0)e_i~~t= ei~te_~~~otg(t) &hbot e_~~t. (2.87)

From the Lorentz transformation rule for one particle states the S matrix transforms as

1/2

Sp~(p,±i)=(~)SA~(Ap,±/)exp{;ij~(p,A)}. (2.88)

This is possible if and only if

(i) g~’~1(p)isthe spacelike part of a symmetric tensor gH~)~.(p) with

U(A)g~~.(p)U’(A)= A~Ig~~1/1(Ap). (2.89)

(ii) The tensor is conserved

p’2lg(hl)(p) = 0. (2.90)

The propagator for the / = 2 particle is given by

(T{A’2
1/(x), A~(y)}>

0= (2~3/2 j d
3p fl’2VX~(p){O(x—y) ei~_~+ O(y _x)ei~Y_x)}

(21p1)112 (2.91)

H’2VXSl(p) = ~ e’t(p) e~(p)e~(p)e~(p) (2.92)

In momentum space, this gives

= ifd4x exp{—iq . (x — y)} (TfA’21/(x), AX~(y)}
0= HM1/~(q)/(q

2— ie). (2.93)

Lettingp = k = (001), using (2.63) and evaluating the polarization sum shows that the only non-
vanishing components of (2.92) are

11’’’’(k) = fl2222 (k) = 111212(k) = 112u2(k) = fl1221 (k) = 112121(k) = _11u122 (k) = fl221 ‘(k) =

(2.94)

There is a simple relation between fl’2~~(k)and H’21/(k). fl’21/(k) is given by

fl’2P(p)~ e~(p)e~(p). (2.95)

Application of the rotation R(~j)enables to represent fl’21/~(q)as:

= ~ [HMX(q)11V11(q)Vlt(q)+ flM1t(q)flVX(q) — fl’21~(q)flX??(q)~ (2.96)

where

(,,M ~ 2 ~2 V

q q /q0+~ ~7‘7 (2.97)
1q12 1q12

= [0001] . (2.98)
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The propagator (2.93) can be split into three parts

~~q) = ~1(q) + ~(q) + ~~q) (2.99)

~~VXt1(q) = ~‘7PX’7V7~ + ‘7’2T?’7VX — ~‘2X~Xr1)/(q2 — ic) (2.100)

while ‘~Gradcontains all terms carrying a factor q’2, q° qX or q” and ~Loc is the remaining part

= [(‘7’2?~’7V’771+ ‘7’2Tl’7V’7X +
77VX77’271n +77~’7’27f’— 77)2V77X7111 —

(2.101)

The ~Loc term does not have a pole at q = 0, so its Fourier transform is temporally local, and
its effect can be cancelled by adding a “Newtonian” term to the interaction.

The current g’21/(x) has to be conserved to eliminate the l/q
2 pole in ~Grad~ The only conserved

symmetric tensor is the energy momentum tensor O’2V, so A’2V has to be coupled to For exact

conservation must involve the potential A’2V. Therefore the proof of Lorentz invariance becomes

extremely difficult for the case of / = 2 (the graviton) but forj = lit is simple but longwinded.
The effective graviton propagator is

~~PX1?(q) ~j[’7PX’7V71 + — ‘7’2V’7X5?]/(q2 — ic) . (2.102)

2.5.4. Derivation of Einstein ‘s equations

For the massless particle with / = 2 the Lorentz invariant theory leads to the derivation of

Einstein’s equations. The interaction representation potential in this case is traceless. It then fol-
lows that the traceless part of the Heisenberg representation potential is given by:

A~4(x,t) — ~‘A~,k(x, t) = U(t)A~’(x,t)U’(t) . (2.103)

Analogously to the case of the scalar potential for the electromagnetic field, six components of the

Heisenberg representation potential are introduced and lead to the equations

(2.104)

V2A~.,
1(x)= —~g~(x) (2.105)

V
2A~(x)— ~A~k(x) = —~g~

1(x)— ~g~(x) (2.106)

a1A~(x)+ ~aOA~k(x)= 0. (2.107)

The S matrix for a transition a—f3 due to an infinitesimal c-number can then be expressed as:

= _ifd
4xq3outIA~’(x)I~in)6g~

1/(x). (2.108)

The field equations satisfied by (2.103) are:

02 [A~(x, t) — ~6”A~k(x, t)] = —fd~yD”(x —y)g~(y,t) (2.109)

where
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Dui~(r)= (2~r)3fd3p Hiikl(p) exp(ip r) = ~ [(

6ik ö” + 6116jk — 61/6k/) ~53(x — y)
(2.110)

+ ~ a’a”~
1’+ aat

6Jk + a’a’6” — aa’6”~’— akal6ii)D(x — y) + ~a’a’a’~a’~(x---y)]

~(x —y) = (27r)-3f~±exp{ip.(x —y)} = ~(0) — 1xy1 (2.111)
IpI 7r

By using the current conservation condition one obtains

0
2A~(x)— a°a’A~(x)— a

0a’A~(x)— a’a’[A~(x) — ~A~k(x)]= —g~(x)+

(2.112)

The traceless part of A~is divergenceless as is A”(x),

a,A~(x)— ~a,A~k(x) = 0. (2.113)

These equations can also be expressed as

R~
1/(x)= —g~1/(x)+ ~g’21/g~~(x)

or equivalently as

R~1/(x)— ~gP1/R~~(x)= g~j1/(x) (2.114)

where R’2H1/ is given by

R~j1/(x)= D2A~~(x)— a’2a~A~~(x— a~a~A~’2(x)+ a’2a~A~,~(x). (2.1 15)

Equations (2.110) and (2.111) must also be retained as gauge conditions on the potential. They
arise because of the special way in which A”(x) have been constructed. Equations (2.113) and
(2.114) are recognized as Einstein’s equations in the weak field approximation provided that
g’2V is taken as

g’21/(x)~’21/+A’2H1/(x)

and the. energy momentum tensor O’2V is for matter alone, which is however inconsistent with the

requirement that the current g’2~’be conserved. The matter tensor
0’2V has zero covariant divergence,

but its ordinary divergence is � 0 if gravitational interactions must be accounted for. Gupta has

shown that (2.113) with an exactly conservedright-handside is exactly equivalent to Einstein’s

equations.
The Feynman rules for photons and gravitons can thus be formulated and are summed up in

section 3.

3. Rules to calculate diagrams

The Feynman rules for photons, gravitons, electrons, and neutrinos etc. can now be formulated
and are summed up in section 3. It is worthwhile to mention that the rules discussed are not a corn-
plete set of Feynman rules and cannot be used to calculate higher order terms involving closed
graviton loops.
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The wave function of an incident electron of momentum p~and spin S~is given by the solution

of the Dirac equation,

(p—m)’1’,—0 (3.1)

‘P~(x)= i/~~-~U(p,, S~)exp(—ip, . x). (3.2)

For a neutrino of momentum p~and spin S~

= U(p1, S~)exp(—ip~. x). (3.3)

The wave function is normalized to unit probability in a box of volume V. In a similar way, the

wave function in the final state is given by:

‘P~(x)= i/~iU(p~, Sf) exp(ip1~x) (3.4)

for the electron, and

= U(pf, Sf) exp(ip~. x) (3.5)

for the neutrino.
The wave functions in momentum space are obtained by use of the Fourier transform.
~/m/E,~-V U(p1~,S~f) describes an electron in momentum space in either the initial or the

final state and \/(11V~i U(p1~,S1~)describes a neutrino in either the initial or the final state.
The four vector potential of a “photon” with momentum and polarization c~is written as

a plane wave

A’2(x, p) = ~V (e~~+ e~
t~) (3.6)

P~P°~ (3.7)

f’2 is the unit polarization vector and satisfies the transversality condition,

e~p’2=0. (3.8)

The wave function of an incoming photon is given in momentum space by:

= (2ir)3/2 �~(Pi). (3.9)

Similarly the wave function of an outgoing photon is given by:

‘P~t = (2ir)312 ~ E~(p~). (3.10)

The photon propagator is given by the equation:

DD~(x—y)=64(x—y) (3.11)
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d4 q
DF(x — y) = f e~Y)D~(q2) (3.12)

(2ir)~

DF(K2) —~— ‘7’2~/(~2— ie). (3.13)
(2ir)~

This last equation describes a virtual photon propagator (p -+ ii) for an internal line of momentum
K.

The form of the electron—electron—photon vertex is dictated by the requirement that A’2 is

coupled to a conserved covariant quantity.
The Lagrangian for the electron—electron—photon interaction is given by:

.12~= —e’T~~y~’P
1A’2. (3.14)

In momentum space the electron—electron-—photon vertex is given by:

—(27r)
4e7~64. (3.15)

The potential for an external particle of momentum p and helicity ±2is given by:

A~1”22= (2~)_3/2f~ e~(p)e~(p)[a(p, ±2)eipx+ b*(p, ~2)e~Px] . (3.16)

The graviton is its own antiparticle like the photon,

h(p,±2)a(p,±2), b*(p,±2)a*(p,±2). (3.17)

In momentum space the wave function of an incoming graviton is:

= 1 1 c~(p)e~(p). (3.18)
(2ir)312 ~

The wave function of an outgoing graviton is:

e~(p)e~(p). (3.19)

g (2ir)312 \/T3~The symmetrical tensor
0’2V is given by:

= —~(‘I”y’2a~’W+ ‘P7
1/a’2’P). (3.20)

The electron—electron—graviton vertex is given by:

—~(~p7Vp~); (K~l6~G). (3.21)

The neutrino—neutrino—graviton vertex can be expressed as:

+ i7

5)(7~p1/ + 71/pu) . (3.22)

The scalar—scalar—graviton vertex is given by:

—~K(p1~p21/+p11/p2~, — m
2~~

1/) (3.23)

where p1 and p2 are the initial and final four momenta of the scalar particle and m is the mass of
the scalar particle.
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The photon—photon—graviton vertex is given by:

—~ {(~i~P
1n — e10p1~)(e21/p2 — c~p21~)— ~6.~(e10p~ — e1~j310)(e~p~— e~p~)} (3.24)

where p1 and p2 are the initial and final four momenta and e~and �2 the respective polarizations.
It is obtained from the interaction Lagrangian —~ Kh’2V T’2V for a particle and can be used to describe
effects like the redshift, the deflection of light by the sun and also for interactions of fermions,
scalar particles etc. with gravitons in the weak field approximation. T’2V is the energy momentum
tensor of the particle considered. Also the energy momentum tensor for scalar matter is given by

the expression:

=

01V01’2 — ~~7~010~10 —

Table 3.1

Feynman rules for gravitons, photons, electrons, neutrinos, and scalar particles

Wave functions Graviton vertices

External particle of Wave function Particles Vertex

momentum p

Photon—photon— _/-~(j~~{(e~~ 1OPI’2)

., —3/2 1
An incoming photon () _______ graviton x

(21p1)112 -

-3/2 1 X (e~p~—e~p~)}
An outgoing photon (2ir) �

(2ipi)’~2 —

Electron—electron—
., —3/2 1 ‘2

An incoming graviton (.~ir) e~(p)e~(p) graviton

(21p1)’’2
4 4Electron—electron— _e(2~) ~

., —3/2 1
An outgoing graviton (.~ir) e~(p)e~(p) photon

(21p1)”2 — — Scalar—scalar—
—~Q-l’2P2V~PlVp

2’2—m ~~‘2V)\/i~G

J/c~:U(p1 S1) graviton, —3/2An incoming electron (sir) — Neutrino—neutrino— i ~ ~

graviton
., —3/2

An incoming neutrino (.~ir) j/~iU(p,.S~) Propagators

Photon propagator
An outgoing electron (2,r)_3/2 J/ii~K U(pf, Sf) for an internal line

—i(2ir)

4 ~~‘21’/(q2~je)
carrying momentum

j/~U(pf
Sf)., —3/2An outgoing neutrino (hlr) — Scalar propagator —i(2ir)4/(q2 —ie)

Graviton propagator —i(2ir)4An incoming scalar particle (27r)_3~’2 1/~U(p
1, s~I 2(q

2 —ie)

An outgoing scalar particle (2i~)312
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Table 3.2.

Non-linear graviton vertices.

Although these vertices are beyond the scope of this review, they are introduced for convenience as they are used in a few instances

in the course of the review.

Particles Vertex

3 gravitons —2~’~i~~P3V
2~’21V2~V1’23— ~ ~3’21P3~V1’22~V2’2 2~3P2~2V3~’21V2~1/1’23

p3)?~’2V?1J’2?1’2V+ ~

4 2~ ~ 1211/I 1221/I 8 2 3 ‘2i~i ‘221/3 1/2123 8 2 3 12iV, ‘22~21231/3

— 4~2V3~2’23~M1V1~122V2 + l~2V3~2’23~’2,V2~’22V, }

Two graviton-two scalar — ~ — ~ — ~‘2K~vx~~1 p2 + ~ 112p24~+ p1 ,~p212)+ ~‘2,~(P1?J’2~+ p1 1/p2~)

+ ~ +p1~p21/)+ ~V~~Pl~P2’2 + ~1’2~2X~

— ~12V~lX~2K ±p1~p2~)—~ld’2VlUt’2’2~

4. Graviton production from particle—antiparticle annihilation

The production of gravitons from particle-antiparticle annihilation has been considered by
Ivanenko and Sokolov [42, 43] and Ivanenko and Brodsky [45]. More in general the possibility of
mutual transformations of matter and gravitons has been discussed by Ivanenko [44]. Ivanenko and
Sokolov then calculated the cross sections of the transmutations of scalar particles into gravitons.
For a scalar field result coincides up to a constant factor with the result obtained by Vladimirov

[79] for the non-relativistic approximation to the electron—position annihilation into gravitons.
Vladimirov’s work is discussed below.

4. 1. Electron—position annihilation

Vladimirov [79] has studied the following processes:

a) e~+e-~g+g
b) e~+e-+g+7

which are represented by the diagrams (a—e) and (f—k) of fig. 4.1 where e~and e are the positron
and electron, g is the graviton and 7 is the photon. These reactions have a higher probability of
occurence. In fact, particularly favourable conditions for these reactions exist in supernovae,
where the core can reach 5 X l0~K and pair densities are consequently very high. The interaction
Hamiltonian used by Vladimirov in a previous paper [801 makes use of

H = ~i(\/~) (h121/ — ~ö121/h)(~7~~L~!—

but yields however incomplete results. For this reason Vladimirov has used in his more recent
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p~. .~

Ik
1’~ ~‘~2 ,k2 1i2\

P2/\~1

Ca) (b) Cc)

I

,~i”t’\ /
/ ~ j~i12

Cd) (0)

(kI

Fig. 4.1. (a)—(e) Broken lines represent gravitons: The processes e~+e— g + g. (f)—(k) Wave line represents photon: The processes

e+ + e -~ g + ‘y.

paper the tetrad formalism of Fock and Ivanenko. The tetrad formalism is in fact required to in-

corporate spinors in curved space—time. The influence of a gravitational field on a fermion field
is therefore described by means of a tetrad field and all its equations are derivable from a varia-
tional principle. If h~,ha12 denote the contravariant, covariant components of a tetrad numerated
by an index a running from I to 4, with h~being timelike and the other 3 tetrad vectors spacelike,
then

ha’2 = ~abJ,!1 , ha’2 = ‘7ab~’2 , (4.1)

where ~ = 77ab is the Minkowski metric. The connection between the tetrad field and the metric

field g121/(x) is given by

g121/ or h~haV= g’2
1/ . (4.

Then the field equations can be derived by means of the variational principle ~ I (L + Lm ) d4x 0
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where L is the gravitational Lagrangian and Lm is the matter Lagrangian which is a function of the
tetrad field variables and the matter field variables and their first order derivatives. Also the

Lagrangian is invariant under constant Lorentz rotations of the tetrads,

= L’(x) ha’2(x) (4.3)

where L’ is the Lorentz rotation.
For a complete description of the interaction of the gravitational and spinor fields, it is neces-

sary to take the Lagrangian density of the sum of the spinor field in curved space and the gravita-

tional field:

2jnt = E~ + £2 + ~12grav (4.4)

.12k is the first order term in the expansion of the equation:

— ~ ~/T~ [—i~~yaha12 -~!+ 7aha’2’P + 2m’~’P+ ~ (~‘Yc7a7b — 7b7a1c)c12~~~’2,1/a1

ax’2 ax’2 (4.5)

and is of the form

.121 = ~ ~J~(h

121/ + ~77121/h)(_i~P712~! + i ~ . (4.6)
ax

1/ ax
1/

The density £2, the expansion of (4.5) to order K, has the form

£2 = ~(h12ahua + ?1’2Vhabhab)(_i’117’2 ~! ÷~~! 7~~I~)+!~4mh121/h’2
1/4’

— ~ (-,~
12i-~1/~-~__ — 71/h12~ -~_—~ — 71/70712h0~~ + Kf(h). (4.7)

The second line of (4.7) results from the introduction of the tetrad.
12grav is the first order expan-

sion of the Lagrangian density of the gravitational field. Therefore:

12 = - h ~ab ~ + i/~ih -~-~- -~-~- -- i/~iih —~ —~gray V 4 ‘2~ ax
12 ax1/ V 8 121/ ax12 ax1/ V 2 12~axb axa

— h121/ ~ + 1/ic h121/ ~ ~vb (4.8)

A lengthy but straighforward calculation yields the differential cross section:

= ~ (4~)2pk0 [p2 m

2 cos2 0 + p4 sin2 0 + 2p4 sin2 0 cos2 0 + ~(m2 — p2 sin2 0)2

~3p2m4 +m2p2(m2-—p2 sin2 0) p8sin2O 1 (4.9)

m2 +p2sin2O (m2 +p2sin2O)2J

where p is the momentum of the fermion and 0 the angle between the direction of motion of the
initial particles and the momentum of the graviton.

In the classical case, when k~— m2 ~‘ p2, the above formula takes the form:
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dci~1 2 ~ 1
m K —. (4.10)

d~ 64(8ir)
2 V

The radiation is equally probable in all directions.
In the ultrarelativistic case, in which p2 —. k~~

dci K4k~
(3sin220+2sin4O). (4.11)

d~ 28(8ir)2

From (4. 11) one can see that there is no radiation of gravitons in the directions of propagation
of the initial particles.

From (4.9) it is also possible to obtain a similar formula for the annihilation of two four com-
ponent neutrinos (m = 0) into two gravitons (Wheeler and Brill [90]).

The total interaction Lagrangian of spinor, gravitational and electromagnetic fields is given by:

12int = e’4’7
12’T!A’2 — ~e~/~’I’712’pA’2h— ~ +‘~f12~F12°h~

- (4.12)
— ~ ~./~F121/F’2”h+ ~ ~m’~I’h + ~ ~/~(h121/+ ~g121/h)(_i~i!712 ~!712~f) + \/~f(3h)+0(K

2).

~/~f(3h) are terms containing the product of three graviton functions. A transformation of the
pair into a photon and a graviton is possible for identical polarizations and the processes are re-
presented by the diagrams f—k of fig. 4.1. If the calculation is in the center of mass system, the
contributions of the diagrams f, i and k mutually cancel.

The differential cross section is given by

2i~ i2 .1 2 2

e2i~2 n3 sin2 0 r sin u(,~ — z.p sin )~
dci = 1 + sin2 0 + I d~. (4.13)

4(8ir)2 k
0(k~— p

2 cos2O) L — p2 cos2O ~l

In the classical case p2 ~ k~= m2

dOei e2~2 /V\3
= I— I sin~0(1 + 2 sin2O). (4.14)

d~ 4(8ir)2 \

Because of the presence of the factor sin2 0 in (4.14) the production of gravitons and photons has
a maximum at 0 = ir. There is no radiation in the directions of the momenta of the initial particles.
In the ultra relativistic case p2 ‘-~ k~~‘ m2 the cross section becomes

dci e22K (1 +cos2O) (4.15)

d~ 4(8ir)2

and no longer depends on the energy of the particles. The radiation of gravitons becomes strongest
in the directions of the momenta of the original particles.

A comparison of the total cross sections for processes a) (non linear) and b) can be made in the
classical as well as the ultra relativistic cases. In the non relativistic approximation the total cross
section of two graviton annihilation has the form

r~
rgK2m. (4.16)
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The total cross section for photon—graviton annihilation is

l3rr 2

Gd 480ir (-i-) re~—. (4.17)

In the ultra relativistic approximation the total cross section for two graviton annihilation is

4k2 2 k2

Gur = = Th8 ~ (4. 18)

and increases with k~. For k

0 ~ \/~

7~gmc2, the cross section of the two graviton annihilation

becomes of the order of the cross section of two photon annihilation. For electrons, k

0 ~ = 1021 m,

the total cross section of the photon—graviton annihilation is

~ r~r5/48~r1.26 X 1068 cm
2 (4.19)

and does not depend on the energy or the mass of the colliding particles. At the same energies the
cross section of two photon annihilation becomes of the order of the cross section of photon—
graviton annihilation,

k~ k

0 cr —~\/r~/r8. (4.20)

In the ultra relativistic case, the cross section, unlike the electrodynamical case increases with
energy and for k0 —‘ 1021 m certainly exceeds the limits of the field approximation and becomes
comparable with the cross section for the annihilation into photons.

In spite of the extremely small values obtained for the gravitational transmutations, such
processes may be of importance on a cosmological scale as stressed by Wheeler [89].

5. Gravitational bremsstrahlung

Bremsstrahlung is a well defined process only within certain limits; the simultaneous emission
of very soft gravitons for instanc’e, too soft to be observable within the accuracy of the energy
determination of the incident and outgoing particle, can never be excluded. Such radiation is al-
ways present, even in the usual elastic scattering. Since it is impossible to make a clean physical

distinction between bremsstrahlung and radiationless scattering when the emitted graviton is ex-
tremely soft, the considerations are restricted to the emission of not too soft gravitons. The ex-
ternal field could be a Coulomb field. The contributions of Halpern and Laurent [36] ,Weinberg

[88], Carmeli [15], Barker et al. [3] and Boccaletti [12] are considered in detail. The contribution
to graviton emission from bremsstrahlung processes is certainly not insignificant as shown later in

the calculations.

5.]. Weinberg’s formula

Weinberg has obtained, as a consequence of a treatment in which the infrared divergence of
quantum gravidynamics are removed with the same methods used in quantum electrodynamics a
formula which gives the emission rate and spectrum of soft gravitons in an arbitrary collision
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process. The derived formula for gravitational bremsstrahlung is used to estimate the gravitational

radiation emitted during thermal collisions in the sun which, within the solar system, is found to
be a stronger source of gravitational radiation than classical sources such as planetary motion.

A short account of the treatment of the infrared divergences arising from very soft real and
virtual photons and gravitons is given. In a combined theory of electromagnetism and gravitation,
the infrared photons and gravitons simply supply independent correction factors to transition rates.

The attachment of a soft photon line with momentum q to an outgoing charged particle line in
a Feynman diagram needs the introduction of an extra charged particle propagator with momentum
q + p and one extra vertex for the transition p + q -÷p. If the soft photon line is attached to an

incoming charged particle line, the extra propagator is for momentum p — q and the transition is

p -~ p — q. The extra factor introduced in the matrix element in the limit q -+ 0 is:

~en’7npn’2I(pn q — i7?n�) ; ~= ±1 (5.1)

where the sum runs over all external lines in the original diagram. If a soft graviton line of momen-

tum q is attached, in the limit q -~ 0 the extra factor is:

‘./l6irG ~ ‘lnPn’2P
1/n/(Pn q — i

770e) (5.2)

and the sum again runs over all external lines in the original diagram. The effect of attaching N

soft graviton lines to an arbitrary Feynman diagram is just to multiply the matrix element by N

factors of eq. (5.2). Because of this factorization it is possible to perform a sum over an unlimited
number of very complicated Feynman diagrams.

The virtual infrared divergences are now discussed and the equations derived above are used to
obtain expressions for the infrared virtual graviton corrections. It is shown further that the diver-
gences cancel. In order to obtain these results, it is perhaps easier to deal before with soft photons
and derive at the end the corresponding results for gravitons. The effect of adding N virtual infra-
red photon lines to a diagram that does not already involve any infrared lines is to multiply the

matrix by N pairs of factors:

~i:~e~77~p’2~/(p~q —

Each pair is connected by a photon propagator {—i/(2ir)
4} ?7

121//(q
2 — ie) while a summation over

the polarization indices and an integration over q are carried out. In addition one must divide by
2NN! because the external line poles factor only if we sum over all places to which the two ends
of each virtual infrared photon line are attached and this includes spurious sums over the N permu-
tations of the lines and over the two directions each line might be thought to flow. The result is
then:

f d4qA(q)] (5.3)

A(q) = —i enem ‘7n’7m Pn Pm (5.4)
(2ir)4(q2 — ie) nm (p~ q — “7n~)(Pm q —
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A is a cut off energy, a cut off I qI ~‘ A is imposed to display the logarithmic divergences as powers

of ln A, where A ~ A. This cut off only affects the infrared lines because it is only these that give
infrared divergences for A = 0.

The negative sign of p~qin the second denominator means that if q is the momentum emitted
by line n, q must be absorbed by line m. Summation over N leads to the conclusion that S matrix

for an arbitrary process may be expressed as:

s~exp(~f d4qA(q)) . (5.5)

is the S matrix without virtual photons of infrared type. The rate for a -~ i3 is given by:

exp (Re f d4q A(q)) (5.6)

Re f d4qA(q) = [_ 1 ~ d4q~(q2)]. ~ enem’7n’7mpn Pm = —A ln~ (5.7)
2 . (2ir)3 nm (Pn q)(prn . q) A

where A is the positive dimensionless constant:

A = fd2czA~)

- I ~ enem’7n’7m(pn~pm)
Li - - . (5.8)

2(2ir)3 nm (E~—p~~q)(E~ Pm ~q)
Integration gives:

1 1 ____

A = ‘7nflm’~n~ma— In . (5.9)
8ir2 um ~nnt —

13nm is the relative velocity of particles n and m in the rest frame of either

!~nm= (1 — in~m~/(p~— Pm)2)112 . (5.10)

Therefore:

r’~=F~°~(AIAy’. (5.11)

The same procedure applies to gravitons, with the substitution A -÷ B where

G l+jl3~~ l+!3nm
B=— ~flnh7mmnmm — ln . (5.12)

2ir nm I~ (1 — ~2 )1/2 1 — ~nm
nm nm

Hence:

- l6irG {(Pn~Pm)2m~m~n}
(En_Pn~)(Em Pm ~ (5.13)
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and one obtains
r’ =r’O r,./A\B

13°

Since B> 0, the above equation shows that all processes have zero rate in the limit A -~ 0 just as all
charged particles have zero rate for A -+ 0 in electrodynamics. The paradox is resolved by taking
into account the infrared divergences due to emission of real soft gravitons.

The S matrix elements for emitting N real soft gravitons in a process a -~ ~ is obtained by multi-
plying the S matrix for a -~ ~ by N factors of the type (5.2) and then contracting each of these
factors with the appropriate graviton “wave function”:

(2ir~3/2(2IqI~~”2e(q, ±1)�(q, ±1)

where q is the graviton momentum, h = ±2is its helicity, ~12 is the polarization vector. Therefore
the graviton emission matrix element is:

I (Pn ~*(q~, ~hr))2

S~(l, 2, ...N)S

130 II (2ir)~
12 77 . (5.15)

r1 2Iq~i’/2n Pn q,~

By squaring eq. (5.15), summing over helicities and dividing by N! because gravitons are bosons one

obtains the rate for emission of N soft gravitons with momenta near q
1, q2, q3, ...

F~(q1,q2,...q~)d
3q
1...d

3q~ ~ £~B(q~)d3q~, (5.16)

whereF~=

B(q) = (27r)_3/2~~J_~.l6~rG~ fln77m P’2n P~nP~mP~H
121/~0(q) (5.17)

IqI

and

= E e12(q, ±)e1/(q, ±)e(q, ±)e(q, ±1). (5.18)

Also

11121/~~(q)= ~ {H12p(q)Hv~(q)+ H120(q)H1/~(q)— 11121/(q)H~0(q)} (5.19)

where 11121/(q) =

Therefore

‘7n’7m {(p~•p~)
2—~rn~m~} (5.20)IqI nm (Pn q)(prn q)

B(q)B(~)/IqI3. (5.21)

The rates for emission of N gravitons with energies near ~ C1~~is given by integration of (5.16)
over solid angles,
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RN dw
1 dw2 dwN

wN)dwl ... dwN 1’13~-~-— ~— ... -~-— . (5.22)

The preceding equation shows that the graviton emission rate contains logarithmic infrared diver-
gences on integration. Use of the well known representation of the step function gives:

~ exp(Bf ~e~0) du (5.23)

and for A -~ 0

= (E/A)B b(B)F~ (5.24)

where

b(B) -i_f da~—
0exp(x f ~ (e’~~’°— l)} . (5.25)

By inserting (5.14), which displays the virtual infrared divergences, into (5.24)

F
1~(’~E)=(E/A)’

tb(B)1’
13

0
0 . (5.26)

It is seen that all dependence on the infrared cut off A disappears. F~ is the rate for the process
a -÷ ~3without soft graviton emission, and without inclusion of virtual infrared gravitons. To lowest
order in G the above equation gives the power spectrum of soft gravitons accompanying a reaction
a —~ f3 as:

E dF130(~E)= B F~dE. (5.27)

The rate of emission of energy in soft gravitational radiation during collisions is:

P(~A)=f EdF(~<E). (5.28)

“Soft” here means that the emitted energy E is <A. By using (5.26) one obtains:

P(~A) = 1 + B b(B) Ar0 BAFQ. (5.29)

If the particles involved in the collision are non relativistic then (5.10) may be expanded in terms

of V~and Vm with Vp/E

1~nm V~+ ~ — 2 Vn~ Vm — V~V~— 3 (V,1~Vm )2 + 2(V~+ V~)(V0 Vm). (5.30)

Use of (5.30) in (5.12) gives:

1 ÷~2 “l+° 1/2
___- nm ln( ~ =l+~(Vn_Vm)

2+~(V~+V~)2+.... (5.31)

2R2, (1 32)1/2 1 ~f~nmrn m
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Because of energy momentum conservation the following equations hold

~ 77nmn(l+~+~~...)0, �~flnmnVn(l+~Vn
2+...)0 (5.32)

Use of (5.31) to (5.32) in (5.13) gives in nonvanishing order in V

B=_G(~Q~/Q

1J+~Q~1) (5.33)

77n’~nVniVnj. (5.34)

In non relativistic elastic two body scattering

= ~p

2 V4 sin20~, = 0 (5.35)

where p is the reduced mass, V = I V
1 — V2 I is the relative velocity and Oc is the scattering angle in

the center of mass system. Therefore:

_8G 2 4 2
p V sin Oc . (5.36)

The rate for such collisions per cm
3/sec is Vn

1 n2 da/d~where n1 and n2 are the number densities

of particles 1 and 2. Hence the total power emitted in soft gravitational radiation attributable to
1—2 collisions is:

P(’~<A)=~.cp2 V~n
1n2V~Af~5~fl

20cd~ (5.37)

T’ is the volume of the source. “Soft” radiation can be defined by taking the cutoff A ~p V2.
This formula can be used to estimate the thermal gravitational radiation from the sun. The most

frequent collisions are the Coulomb collisions between electrons and protons or electrons. There-
fore:

pme, V , nine, n
2ne+np

2ne, (5.38)

~ sin20~d~2= 8ire2 ln AD. (5.39)
d~Z (3kT)2

AD is the ratio of the Debye shielding radius to the average impact parameter. The solar gravita-
tional radiation is given by:

p
0 = 9-~ (3kT)

312 ~L fl~V® ~!~_- ln AD . (5.40)

In the sun’s core T~ l0~K, ~e = ~ x 1025 cm3, V® = 2 x 1031 cm3

lnAD 4. (5.41)

Therefore the power is calculated to be
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P® 6X l0’~erg/sec. (5.42)

As a comparison, classical quadrupole radiation for the Jupiter—sun system yields only 7.6 X 1011

erg/sec at extremely low frequencies.
The thermal gravitational radiation from the sun appears to be the dominant source of gravita-

tional radiation in the solar system. A binary star like Sirius A and B radiates more classically, the
power is 8 x 1014 erg/sec, and also more thermally. Thermal collisions may possibly provide the
most important source of gravitational radiation in the universe.

The power spectrum formula of eq. (5.17) is both classical and quantum mechanical. Also,
since everything in the universe is almost transparent to gravitons, eq. (5.37) may be used directly

to compute the thermal gravitational radiation from any hot body.

5.2. Gravitational bremsstrahlung from the sun

Carmeli [15] has calculated the solar gravitational radiation power by determining the spectral
resolution of low frequency gravitational radiation by a system of colliding particles. The spectral

resolution is obtained by application of Fourier analysis to the Landau and Lifshitz’s formula [5 1]
for the gravitational radiation intensity. In general, in the spectral distribution of the radiation
accompanying a collision, the main part of the intensity is contained in the frequencies w I /r,

where r is the order of magnitude of the duration of the collision. For this interval of frequencies,
however, one cannot obtain a general formula for the distribution. The “tail” of the distribution
at low frequencies, satisfying the condition wr -~ 1, is, however, easier to handle. This is in fact
the case discussed by Weinberg, as seen in section 5.1. This part of the calculation by Carmeli is
thus a classical version of Weinberg’s treatment and the result for the spectral power of the gravi-

tational radiation is in accord with the result of Weinberg. By using Carmeli’s method, however,
one can also estimate the total gravitational radiation of the scattering process for all possible
frequencies, and without resolution into Fourier integrals. In fact, if ~E denotes the gravitational

radiation accompanying a collision of two charged particles, then i~Eis obtained from the radia-
tion formula by integration over the time interval (_oo, oc) of the collision at all possible frequen-

cies

f Idt= f (d3D)2 (5.43)

‘~ dt3

where D,k is the mass quadrupole moment

Dlk=J’p(3x1x1c — ~5ikxx)d3x (5.44)

The rate for such collisions/cm3 sec is v
1 n1 n2 du/d~2.Hence the total power radiated for any

two particles 1 and 2 is

P= fv~vn1n2 ~

or (Spitzer [73])
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P—V~vn1n2f ~E2irpdp. (5.45)

The integral in (5.45) is the effective radiation and its value for quadrupole gravitational radia-
tion can be calculated by following the method of Landau and Lifshitz [51]. The result is:

f dpf dtI2~p
3~~pe2V3. (5.46)

The total power is therefore:

___ 124P p e v n
1n2 T’ . (5.47)

Use of the equations (5.38) due to non relativistic collisions in the sun gives the total radiation
as

= 64irG -~-e
2 n~(3kT)2l’~. (5.48)

9c5 m

Using the same data taken by Weinberg for the sun’s core:

T~ l0~K, ne 3 x 1O~~cm3 V~2X 1031 cm3. (5.49)

The solar gravitational radiation power is found to be

Pac 5 X l0’~erg/sec. (5.50)

This value is about 10 times larger than the one obtained from eq. (5.37). It also does not require
any cut off as the integral (5.46) unlike (5.37) converges.

5.3. Bremsstrahlung in neutron stars

Boccaletti [12] has applied Weinberg’s results to study the emission of high frequency gravita-
tional radiation from neutron stars.

The data used now are

—. 1019 cm3 for the volume of the neutrino star,

p — 1014 g/cm3 for the mass density

n = particle number 0.6 X 1038 cm3 , (5.51)

1.3 X l0~cm—1

EF = P~/2rn— 5 X l0~erg —‘30 MeV, A — ~EF

V 0.75 X 1010 cm/sec is the center of mass velocity, m is the neutron mass and t1eff is the effective
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reduced particle number due to the degenerate gas while n is the original particle density

neff = n kT/EF~. (5.52)

The phenomenological cross section ci is

l0~~cm2 . (5.53)

Therefore the power is calculated to be

P(~A)= 1.6 X 1026 erg/sec. (5.54)

This value of P is calculated for the tail of the spectrum and the average graviton frequency is

v 0.4 X 1022 Hz . (5.55)

The total gravitational radiation of a neutron star, including all the frequencies of the spectrum

and without any cut off is:

P— 1027 erg/sec (5.56)

with the same ratio of total to tail power found by Carmeli for Coulomb scattering in the sun.

5.4. Graviton bremsstrahlung with gravitational scattering

The formulation of Gupta [33] can be used to treat graviton bremsstrahlung in a manner similar
to photon bremsstrahlung. A discussion of the problem of infrared divergences in processes involv-
ing the emission of photons can be found for instance in Jauch and Rohrlich [47] or Yennie et al.
[92]. From Weinberg’s formulation [88] it can be accepted that the infrared divergence in graviton
bremsstrahlung is cancelled by the diagram that contributes in radiationless scattering, though
Weinberg has not discussed the self energy diagrams in radiationless scattering which are necessary
to cancel the infrared divergent renormalization constant in the vertex diagram. The problem,
though quite similar to that in quantum electrodynamics, is more cumbersome to resolve in the

present case.
The graviton bremsstrahlung cross section for a spinless particle is derived by Barker et al. [3]

by including linear as well as non linear gravitational interactions. They also show that the total
probability for the emission of non physical gravitons in this process vanishes. The complete

elimination of the infrared divergence in graviton bremsstrahlung is carried out by using the
vertex and self energy diagrams suggested by the work of Dyson [25] and Ward [81].

The collision between two spinless particles of masses m and M is considered with the restrictions

M ~‘ m and ~MV~,J~ M. These conditions allow full consideration of the gravitational field which
is not done if the scatterer is represented by means of an external field.

The initial and final propagation four vectors of the heavy particle are q and q’, and that of the
particle of mass m are p and p’. The propagation vector of the emitted graviton is k. The scattering
operator for the diagrams of fig. 5.1 is given by:

~

4V512 \/2p
0p0k0(k+p —p)

2

X I,~a~(k)a~(q’)a(q)a~(p’)a(p) (5.57)
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Cd) Cd) (a)

Fig. 5.1. The lowest order diagrams for graviton bremsstrahiung with gravitational scattering.

where

I,,, = A,
1 + B,1 + C~1 (5.58)

A11 ~p
2 _p~2)(~p~ ~0)k

B.. = 2(p~— !~2)~l~ + 2(p’ — ~i.m2)p~p
1— p.p1[(4p~p0 — ~p

2) + (k +fJ’ —p)2] (5.59)
(p’—p)2—k~

(k+p’ —p)2p~p.
C~,= C /, k2=0, p2=p’2=—p2 . (5.60)

(p’ —p)2 — k~

A,
1 represents the contribution of diagrams (a) and (a’), while B,1 and G~1represent the contribu-

tions of diagrams (b) and (c). The remaining diagrams give vanishing contributions in view of the
large mass of the scatterer.

After summation over the two polarization states of the graviton, the graviton bremsstrahlung

cross section becomes
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do = K
6M2 ~ ~~sin 0 ~in0’ dO dO’ dØ’ [Pp4 sin4O + K2p’4 sin40’

32(2ir)4 k
0 P1 (k+p’—-p)

4((p’—p)2 —k~)2

+L2 p’2 p2 sin20 sin2O’ + 2JKp’2p2 sin20 sin2O’ cos2~’

+2.JLIpI3Ip’Isin30sinO’cosØ’+2KLIp’I3IpIsin3O’sin0cos~’ (5.61)

with

1 2 ‘2 ((p’ —p)2 — — 2k
0(IpI cosO —p0))

= -- ~°~) ~i~r~50 —

((p’ —p)
2 — k~+ 2k

0(Ip’I cos 0’ -- p’0))

Ip’Icos~’—p~ (5.62)

L4(~p
2 —p~p

0)k0

The angle between p and k is 0, the polar angles of p are 0’ and ~‘. In the non relativistic ap-
proximation, (5.61) can be easily integrated over the angles. When p

2 ~ p2

k
0 — — ~2 — ,,‘2 )/2~

so that

J= ~p[p
2 —p’2 +(p’ —p)2] ; L = —p(p2 —p’2); K ~p[p2 —p’2 — (p’ —p)2]

(5.63)
(k +p’ —p)2 = (p’ —p)2 ; (p’ —p)2 — = (p’ —p)2

Integration over the angles ~‘, 0’ and 0 gives (in C.G.S. units)

dU=!~j1ch ~ (~±+
3~_t~P11nJiil’,I)

l5(4ir)
3 k

0 \ Ipl 21p1
2 p1 — Ip

~ (s~~-+~(2—e)ln (5.64)

where ~ is the ratio of the graviton energy and the incident particle energy. The logarithmic term
is entirely due to diagrams (a) and (a’) which involve linear gravitational interaction, and it domi-
nates the bremsstrahlung cross section in the non relativistic approximation. However, the general
result (5.61) shows that the contributions of diagrams (b) and (c), which involve non linear gravi-
tational interactions, are quite important at relativistic energies.

5.5. Graviton bremsstrahlung with Coulomb scattering

The graviton emission during the Coulomb scattering of a spinless particle of charge e by a heavy
particle of charge Ze can also be estimated along lines similar to those expounded in section 5.4.
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Fig. 5.2. Graviton bremsstrahlung with Coulomb scattering.

However, in addition to the particle—graviton coupling terms, one must consider the particle—
photon coupling terms

ieA12[(a
12 U*) U — U*(aM U)] _e2A

12A12 U* U, (5.65)

the particle—photon—graviton coupling terms

ieg(h121/ — ~.i5121/h~)A12[(a1/U*)U— U*a1/U]+0(eK
2, e2~) (5.66)

and the photon—graviton coupling terms

—~Kh
121/(F~F

1/~.5121/FFXP)+O(K2) (5.67)

The lowest order diagrams for the process under consideration are shown in fig. 5.2 and can be
treated in the same manner as the diagrams of fig. 5. 1. The diagrams (a), (a’), and (b) only contri-
bute to the scattering cross section which can be expressed as

72 4 2 dk
0 . o o’ Afi ~~Q’d-~”

do = ~ e g IL sin sin U U [J’
2p4 sin4 0 + K’2p’4 sin4 0’

8(2ir)4 k
0 tpI (k + p’ -- p)

4 ((p’ — p)2 — k~)2

+L’2p’2p2 sin20 sin2O’ + 2J’K’p’2p2 sin2 0 sin2 0’ cos 20’

+ 2J’L’Ip13 Ip’I sin30 sin 0’ cos 0’ + 2L’K’ Ip’13 p1 sin30’ sin 0 cos 0’] (5.68)

where
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= p’0 [(p’
0— p)

2 — — 2k
0(IpI cos 0 — p0)] /(p cos 0 — p0)

[(p’ —p)
2 — k~+ 2k

0(Ip’l cos 0’ — p’0)]
K =—p , , , (5.69)

p I cos 0 — p0

L’—2(p0+p’0)k0

Replacement of (GMm/hc)
2 by (Ze2/4irhc)2 in (5.64) gives the cross section in the non relativistic

approximation.

6. Scattering of gravitons and gravitational scattering

This section is concerned with the scattering of gravitons by spinless particles, the gravitational
scattering of several particles and the bending of light in a gravitational field.

6. 1. The scattering of gravitons by spinless particles

Barker et al. [4] considered the scattering of gravitons by spinless particles and the annihilation

of two spinless particles into two gravitons and have obtained the scattering and annihilation
cross sections for various polarization states of the graviton. The property of invariance under gauge

transformations is satisfied. The authors have only imposed the requirement of asymptotic gauge
invariance and by doing so have obtained weaker gauge conditions than those used by Jackiw [46].
The processes are represented by fig. 6.1.

For neutral and charged particles the interaction Lagrangians used are respectively

12int = _~Kh
121/[a12U0a1/u0 — !~121/~u~P~J — !~121/p

2UU]

—~K2p2(h~jh~— 2h
121/h

121/) U
0U0+0(K

3) (6.1)

and

2iflt = —Kb
121/[a

12U* a1/ U — ~ o121/a~U—- ~ 6121/p2 U~U] —. ~K2p2 (h12
12h~— 2h121/h

121/) U* U + 0(K3)

(6.2)

p’ ~‘

, II~ ,

Ii,,’ / /

/ I’.————

, Ii Ii,

p p p p

(a~ (~) (b~ (C)

Fig. 6.1. Graviton scattering by a spinless particle.
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while the graviton coupling terms are represented by

2int ~K(h
121/ — ~~5121/h~)[~a12h013a1/hnP— a~h~a°h~+ a

13h~12a~h~

+ ~a0h~aahM1/— a
0h~a°h~

13]+ 0(K2). (6.3)

Expressions (6.1) to (6.3) are given as ordered products, in which U
0 and U represent the field

operators for neutral and charged spinless particles, and h121/ represents the field operator for
gravitons.

The contribution of the observable gravitons to the scattering operator in the interaction picture
is obtained by means of the Fourier decomposition,

~ (L)~

2 [a
121/(k)exp{i(k~r— wt)} +a,1/(k) exp{—i(k r — wt)}]

wt = k0x0 , k0 = I kI (6.4)

a121/(k) = e121/~(k)a~(k)+ e,~1/,_(k)a_(k) (6.5)

e121/,+(k) ~ [(e~(k)e~(k) — e~(k)e~(k))+i(e~(k)e~(k)+e~(k)e~(k))] (6.6)

a÷(k) and a (k) are annihilation operators for gravitons with their spin axes parallel and antiparallel
to k, while e

m (k) and e2 (k) are unit vectors such that k, e1 (k) and e2 (k) are mutually perpendicular

and e~= e~= 0.
Also a (p) and a* (p’) are the annihilation and creation operators for the spinless particle.
In the laboratory system,

pO, p
0=p, kk’+p’

p+k0k’0+p’0. (6.7)

The polarization vectors associated with the gravitons are chosen such that

e’(k’)e’(k) I;~,)~kI’ e2(k’)>~~, e2(k)=k~1~. (6.8)

Then the contributions of the diagrams (a) and (a’) of fig. 6.1 vanish and the contributions of
the remaining diagrams take a much simpler form. The scattering operator for the diagrams can be

expressed as:
1 k

21 pkk’

S = (27r)46(p + k — p’ — k’) (ppk
0k’0)”

2 4 2 k
0 — k’0

k
2 ipk k’\1/2 1 ri

a*(pF)a(p) iV2(2ir)4 5(p + k —p’ — k’)—(~ 0 0) I ~l +—~)
16 ~O0 (k

0 — k’0)
112 L k

0 k01 (6.9)

/ k~k’’
2

X (a’(k’)a~(k)+ a~(k’)aJk)) + ~l -— ~—-i-) (a(k’)a(k) + a~(k’)a+(k))ja*(P’)a(P).
0 K

0



88 G. Papini and S. R. Valluri, Gravitons in Minkowski space—time. Interactions and results of astrophysical interest

Asymptotic gauge invariance requires that the scattering operator be invariant when subject to

transformations of the form

aj1/(q) -~ a1/(q) — iq12A(q) — iq1/X(q)

a013(p) -÷ a013(p) + ip0A13(p) + ip13A~(p) (6.10)

a requirement manifestly satisfied.
The resulting scattering cross sections for various polarizations states of the gravitons are

dci~ do

d~ = G
2m2cot4 ~Ocos~O/(l+ 2� sin2 ~0)2

da÷ do

j~G2m2 sin4~0/(l+2�sin2~0)2 (6.11)

where e is the incident graviton energy in units of m and 0 is the graviton scattering angle. On

averaging over the initial polarization states and summing over the final ones,

= G2m2(cot4~0cos4~0+ sin4~0)/(1+ 2�sin2~0)2 (6.12)

which, in the non relativistic approximation is

G2m2 [cot4~0 cos4~0+ sin4~0] . (6.13)

The non relativistic cross section agrees with the results of Jackiw [461, Gross and Jackiw [32],

DeWitt [21] but (6.12) disagrees with the result given by DeWitt [211.

6.2. Gravitational scattering of neutrinos

Boccaletti et al. [11] have considered the gravitational scattering of neutrinos in the one
graviton exchange approximation. The problem is a priori interesting because neutrinos have zero
mass and spin ~ and must therefore exhibit the characteristic behaviour of fermions and at the
same time bear some relationship to that of photons, because of the zero mass. A behaviour similar
to that of photons should also be expected on the basis of the work of Papapetrou and Corinaldesi
[63] who found that the spin of the particle has practically no influence on the value of the de-
flection of light in a Schwarzschild field. An interesting point however, has been raised by
Kobzarev and Okun [48] who have observed that from the point of view of the gravitational
interaction there is no reason why four component neutrinos should not exist. Boccaletti et al.
have shown in their calculations that two and four component neutrinos are scattered in the same
amount by bosons and in the small angle limit have the same cross sections as photons except in

the case of neutrino—neutrino scattering which gives two slightly different cross sections for the
two and four component cases.

6.2. 1. Neutrinos in the gravitational field ofa large mass

The behaviour of a neutrino beam in a gravitational field can be represented by the diagrams

of fig. 6.2.
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q2

Fig. 6.2. Neutrino scattering in an external gravitational field.

The matrix element is given by

(p
2IMIp1>® ~ ~

4(p
2+q—p1)d

3q.

8(2ir)2 IqI (6.14)

The differential cross section can be obtained from (6.14) in the usual way. The result is

4
K a’~® cos2(0/2) (615)

d~ 16 4(217.)2 sin4(0/2)

In the limit of small angles one obtains

4 ‘~2
d KIvI® 1
— = —. (6.16)
d~ 4(2ir)2 o~

Therefore a neutrino beam is deflected, by a large mass in the same amount as a light beam.
There is also no difference in this respect between a two component and a four component
neutrino.

6.2.2. Neutrino—scalar and neutrino—photon scattering

The cross section of neutrino—scalar particle and neutrino—photon scattering can be also

evaluated in the one graviton exchange approximation. The matrix element for neutrino—scalar

particle scattering is represented by

<k
2 p2 IMIk1p1>

= 2(2~)28~° (p1 ~)2 ü ~(l+ i75)(~p~ + 7~p
1/)u~(k

1~k21/+ k112k2~— m
2 ~Mv)• (6.17)
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Fig. 6.3. Neutrino—scalar particle scattering. Fig. 6.4. Neutrino—photon scattering.

k1 and k2 are initial and final four momenta of the scalar particle and p1 and p2 the four momenta

of the neutrino and p = p1 + p2 in fig. 6.3. In the small angle limit the differential cross section is
given by

d 4 2

U K ~ , (6.18)
d&2 4(2ir)

2 ~4

where w is the total c.m. energy and 0 the scattering angle in the c.m. system. Expression (6.18) is

equal to the cross section for the problem in which the neutrino is replaced by a photon (Boccaletti
et al. [9]). The diagram for neutrino—photon scattering is shown in fig. 6.4.

The matrix element is given by

2K _fj . 1/ ________

(k
2p2IMIk1p1)= U1/ ~(l+ry5)(’y p

12+y12p)u
1/4(2ir)

2 ../i~fi~ (p
1 —p2)

2

X [(e
112k10— e10k112) (e21/k~— e~k21/)— ~12p(eiakip — e113k~,)(e~k~— e~k~)]. (6.19)

For small angles, the differential cross section can be approximated by

(620)

dfZ ~ (2ir)
2

which is equal to photon—photon scattering cross section

6.2.3. Neutrino—neutrino gravitational scattering

The matrix element is given by

(p
3p4IMIp1p2) ~c

2 ~ [ii(p
3)~(l +iy5)(y

1/p12+~12p1/)u(p
1) 1 ii(p4)~(l+i75)

16(2ir)
2 (p

1 p3)

2

X (y
1/p~+~12p~)u(p2)—~(p4)~(l +iy5)(7

1/q12+712q1/)u(p
1) 1 2 ~~3)

(p1 —p4)

X ~(l + iy5)(’y1/q~+712q~)u(p2)] (6.21)
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Fig. 6.5. Neutrino—neutrino gravitational scattering.

where p = p1 + p3, p’ = p2 ÷p4, q = p1 + p4, q’ = p2 + p3 in fig. 6.5.
In the c.m. system, in which k is the common modulus of the momenta and 0 the scattering

angle between p1 and p3, the differential cross section in the small angle limit is given by

d 5 ~ k
2

—~---— (6.22)
d~2 ~ (2ir)2 ü~

if the contribution of the 7~terms are included.
If the contribution of the ‘y~terms are subtracted the resultant cross section is given by:

-~-~-=~ —~— ~— (623)

df~ ~ (2ir)2 o~

From the above two equations it is seen that the gravitational scattering of two component

neutrinos is slightly different from that of four component neutrinos. Moreover, (6.23) is exactly
the same as the correspondent photon—photon cross section. In the case of a four component

neutrino, the virtual gravitons could be converted into pairs of anomalous neutrinos and anti-
neutrinos, that is left i~and right ~. These pairs cannot be scattered absorbed or emitted through
weak interactions and would only be deflected by gravitational fields and would themselves be
sources of these fields as pointed out by Kobzarev and Okun [48].

6.3. Gravitational photon—photon and photon—scalar particle scattering

Boccaletti et al. [9] have calculated the cross sections for the photon—photon and photon—

scalar particle scattering both classically and by using the linearized quantum theory of gravitation.
The correspondence principle would obviously connect these two methods. It is therefore con-

firmed by both calculations that the gravitational action of a beam of light is twice as great as the
Newtonian one.

As pointed out by the authors, the comparison between classical and quantized theory is not a
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purely academic problem. The investigations into the peculiarities of gravitational interaction be-
tween photons or between photons and particles is interesting at least for two reasons:

i) On astrophysical grounds, because of the possible insight into astrophysics and perhaps into

cosmology and the various applications and consequences on both domains.
ii) It may be possible in a not too distant future to produce more and more intense photon

beams and therefore test some of the theoretical predictions.
The photon—photon and photon—-scalar particle scattering are discussed in the lowest order in

the perturbative approach, all diagrams of figs. 6.6 and 6.7 are with only an intermediate graviton.

The Lagrangian density for the interaction between the e.m. and gravitational fields is given by:

= — ~Kh121/T121/ . (6.24)

h121/ represents the gravitational field, ~‘121/is the energy momentum tensor of the c.m. field; the

angular differential cross section for unpolarized photons is

do 2K
4 k2 1 1

= .— — ~—[l +cos16~O+sin’6~O]. (6.25)
d~Z (2ir)2 sin2 0

~k3 ~k5~k4 - - - -

(a) (hi

Fig. 6.6. Photon—photon scattering.

Ill

T k

1-k2

/N<2

Fig. 6.7. Photon—scalar particle scattering.
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The expression in square brackets is identical to the result obtained by Barker et al. [5, 6],

though calculated by completely different methods. In the c.m. frame k is the photon momentum
and 0 is the scattering angle. For small angles

/,1 ‘~ 44 k2 k2
j_~±2~) —~-— — 64G2 . (6.26)

i’ \2 ,1a4

quantum i~.7TJ rv u

The classical calculation yields 4 times the value of (6.26). This is equivalent to saying that the

classical deflection angle is greater by a factor of 2. This factor may be accounted for by consider-
ing that in the classical case a fixed beam replaces the photon of the quantum case as a source of
gravitational field. But in the quantum problem the photon too, is deflected. For symmetry
reasons, a factor 2 for the deflection angle should therefore appear.

Photon—scalar particle scattering
K

1 is the four momentum of the initial photon and K2 that of the final photon; p1 and p2 are

the analogous quantities for the scalar particle.
The energy momentum tensor for scalar matter is

T121/ = 011/0112 — ~ + ~m
2 02 ~ (6.27)

and the differential cross section is represented by

do K4 w4 /l+cos0\2

dfl 16(2ir)2 4(w — k)2 ‘~l — cos 0) (6.28)
For small angles (6.28) becomes

K2 I w2 \2 1 2’ w2 \2 1
p — 16G i p — (c.g.s.) (6.29)

\d~2/quantum 4(2ir)2 \W k/ o~ — k~’ o~

where w is the total energy in the center of mass system and k is the photon energy.
The classical differential cross section is given by

16G2 ~- ~ . (6.30)
k2 o~

The classical formula differs from the quantum one by a factor of k2 /(w — k)2. This means that
the classical angle differs from the quantum one by a factor of k/(w — k), that is by the ratio of
the photon energy to the particle energy. The symmetry arguments previously advanced are no
longer valid.

In the case when the ratio k/(w — k) = ~, i.e., the photon—photon scattering, w = 3k.

It then follows that the difference between the classical and quantum formula is the same as in
the case of photon—photon scattering.

A massive particle exerts a gravitational action exactly as that of a photon of the same energy.
In different words, the gravitational deflection of a particle by a beam of light is double that as
would be obtained by replacing the beam by an average density of matter equal to that of light.
Barker et al. [4] have obtained a similar result by applying the quantum theory of gravitation to the
case of photon—scalar particle scattering. Barker et al. give the gravitational potential and find that
light is deflected by a heavy object by twice the amount predicted by the Newtonian theory.
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6.4. Bending of light in an external gravitational field

Boccaletti et al. have calculated the effect of the bending of a light beam in a gravitational field
and considered the interaction of a photon with the external gravitational field of the sun. This

corresponds to one of the three crucial tests of Einstein’s theory and is shown in fig. 6.8.
The interaction Lagrangian density is known fr~mthe work of Gupta and follows from (2.60).
The first order wave function in momentum space is therefore:

— ~Kö~”(E~’~ — !o1/P~)(e~k~— c~k~)(e~k~— �~k~) (6.31)

where e~,k’, and ~2, k2 are the polarization vector and momentum of the two photons.
Fig. 6.8 is the analog of Rutherford scattering in quantum electrodynamics.
The matrix element M in the external field approximation (Jauch and Rohrlich [47]) is given

by:

K2M
(k

2 IMIk1) = 0 ! f~12x(~f~vooPo — !~/~VP)

(211)2 (4k°k~)
1/2

X (e~k,~— e,~k~)(e~k~— e~k~)~~!_ ~4(k
2 +q — k1)d

3q . (6.32)
I qI

= —KM® /47rr is the static external potential and M® is the solar mass.

0(q) = ~ M® /(27r)3/2) I~2 (6.33)

is the Fourier transform of h°°.q is the momentum of the virtual graviton. The graviton polariza-

tion tensor has in this case only the time components

6~vp= ~/~u0 ~p0 = (6.34)

The gauge is chosen, such that �?= = 0. Hence

~~:ttq2

Fig. 6.8. Photon scattering in an external gravitational field.
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<k2IMIk1)=

(6.35)
V~K

2M®

2(2ir)2(4k°k~12f—____ [k~ k~(~~2) — ~(k
1 k2)(c1 ~2) + ~(e~k2)(e~k1)] ~

4(k
2 + q — k1) d

3 q

and

K4M2
do = ~ ~ [k~ k~(e

1~2) — ~(k1 k2)(e1 ~2) + ~(e~k2)(e2 k1)] 2

(2ir)
2(2k?k~)4 pol

ä(k~ k?)d3k
2 = K

4M~ f(1 +cos0)2 d~= K4M~ fcos4 ~0 d~2.(6.36)

(/c?2 ~ — 2k?k~cosO)2 (411)216 1 — COS 0 (411)216

For small angles, tan 0 — 0

42

d KM® 1
— —. (6.37)
d~ 4(211)2 ~4

According to Einstein’s theory the angle by which a photon is deviated in the gravitational field

4GM
0

0= r (6.38)

where r is the least distance from the centre of the sun attained by the travelling photon.

Equation (6.38) is the same as the one resulting from Einstein’s general relativity and is there-
fore a good check of the quantized theory.

7. Annihilation ofspinless particles into gravitons

The formalism in the calculation of the scattering of gravitons by spinless particles has been ex-

tended to the annihilation of two neutral or oppositely charged spinless particles with propagation
vectors p and p’ into two gravitons with propagation vectors k and k’ as shown in fig. 7.1. It takes

into account the self-interaction of gravity as shown in section 4. In the c.m. system

p’—p; k’0—k, p’0p0—k’0=k0. (7.1)

The polarization vectors associated with the two gravitons are chosen as:

ei(k’)1~,~,1 e1(k)1~<P1=e1(k~); e2(k’)~1~

e
2(k)-~kxe1(k) —e2(k’). (7.2)

The scattering operator can be expressed as
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Fig. 7.1. Annihilation of two neutral or oppositely charged spinless particles into two gravitons.

S = —iV
2 (211)~6(p + p’ — k — k’)a(p’)a(p)[(a(k’) a(k’) + a* (k’)a_ (k)) (Fa + F~+ Fb + F~)

+ (a (kl)a* (k) + a* (k’)a÷(k))(F
5+ Fa’)] (7.3)

where

K

2 (p4 —(p — k)2(p + k)2)2 = — K2 (p4 —(p+ k)2(p — k)2)2
Fa~ ~Fa=~~ p~(p2+(p—k)2) p~(p2+(p+k)2)

Fb = —~-~ p~[p2(p2 — 4p~)— (p — k)2(p + k)2] , F~= —f-—. (7.4)

p
0

The resulting cross sections for various polarization state of the two gravitons are

do~÷— do__ G
2E2 I ÷ ~34sin4 0 2

- d~ - ~ ~2 ~2 sin20 1 ~2 cos2Ol (7.5)

do~_ do_k G2E2 r ~34 sin4O 2

d~ - d~ - 4~ [~_p2 cos20] (7.6)

with

Ep
0, l3IpI/p0v (7.7)



G. Papini and S.R. Valluri, Gravitons in Minkowskispace—time. Interactions and results ofastrophysical interest 97

where E is the particle energy, v its velocity, and 0 is the angle between k and p. The total cross
section can be obtained by integrating both da÷÷and do__ over 0 from 0 to ~ir and integrating

either do~_or dci_~over 0 from 0 to 11. Thus:

=~__~G
2E2 [~ — 3~3+3~ _p7 + (~— 2~+ 3~— 2~6+~~8)lnI +p] (7.8)
4j32 l—~

= ~ ~ [7P — 4 W135 — ~7 + (l0~ — — 9j3~+ 2/36 + ~/38) ln 1 ~ 1. (7.9)
2/32 1 —j3j

The total cross section is given by

o=o~.+o__ +o.._ . (7.10)

In the non relativistic approximation

airG2m2//3 (7.11)

while in the extreme relativistic approximation

ow~irG2E2 . (7.12)

The above results are qualitatively in agreement with the earlier estimates of Wheeler and Brill
[90] and of Ivanenko and Sokolov [42] but the numerical factors in the above two equations
disagree with the results of DeWitt [21].

8. The graviton—particle vertex, the proton—neutron mass difference and related problems

The analysis of the graviton—particle vertex in itself, that is quite separate from other parts of
a Feynman diagram, can be used in a number of problems, including the calculations of the proton—
neutron mass difference (Pagels [62]), and the binding energies of the deuteron and singlet deuteron
(Hare and Papini [38, 39]). These applications are essentially based on the close analogy existing
between electric charge and gravitational mass as quantities indicating the source strength of the
electromagnetic and gravitational fields respectively. This may also be expressed by saying that

as the electric and magnetic structures of a particle are obtained in the particle—photon vertex, so
its mechanical properties are contained in the particle—graviton vertex. Dispersion relations may
then be obtained for the form factors appearing in both vertices.

The nucleon-graviton vertex of fig. 8.1 that corresponds to the trace of the energy-momentum

tensor can be represented in the form (Pagels [62])

= ll(P)[G(w2) + G’(w2)l] (8.1)

where G and G’ are nucleon mechanical form factors. It satisfies TCP-invariance. At threshold,

where all lines are on the mass shell, one obtains

G(M2)=M (8.2)

which is the graviton—nucleon coupling constant. Following Bincer’s method [7] one can then

derive sidewise dispersion relation for the mechanical form factor. For proton and neutron they are
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w *m -o

t

Fig. 8.1. The nucleon—graviton vertex.

2 2 ‘2 ‘2

G~n(W2) =M~~+ - ‘ f - ‘ . (8.3)

11 M2 (w’2 — M2 ) (w’2 — w2 — ie)
p,n P,fl

From these one can immediately derive the proton—neutron mass difference

1 ImG~(w2)dw2 1 °° ImG~(w2)dw2öM=M —M =—f ——f . (8.4)p n 1i~ 2 2 M2 11 2 2 ~i2

M~ W — M~ w

The additional assumption of low energy dominance, already tested successfully in the calculation
of anomalous magnetic moments (Drell and Pagels [23]; Parson [68]) restricts the integrations
in (8.4) to X2M~and A2M~respectively with X2 3 (Drell and Pagels [23]).The contributions to
Im G~

0can then be calculated by expanding the vertex as shown in fig. 8.2. The N’y and Nir con-

N ~prn2

~17~-— —-

- - - ~ q 1’

N ~I3 N rn
2

Fig. 8.2. Contributions to Im ~
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Fig. 8.3. Ny contributions to Im G(w
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Fig. 8.4. Nir contributions to Im G(w

2).

- 2 /
I =0,

,• w2*rn~ ,“‘

Fig. 8.5. The two nucleon intermediate state.

7

I’

=_

Fig. 8.6. The electromagnetic contribution.

tributions can be further expanded in figs. 8.3 and 8.4. Most of the diagrams in figs. 8.3 and 8.4
can be calculated in the pole approximation. This is sufficient to give the correct experimental
value for 6M. Completely analogous procedures are applied to the determination of the deuteron
binding energy (Hare and Papini [39]). The vertex of interest is LV(w2) in this case and and

are the polarization vectors for the off and on-shell deuterons respectively. Figs. 8.5, 8.6 and
8.7 represent the two nucleon intermediate state, the electromagnetic contribution and the
break-up contribution respectively. The Lorentz condition d~� = 0 and TCP invariance restrict
the vertex to the expression
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Fig. 8.7. The breakup contribution.

(8.5)

One concludes, however in this case that

Fd(M~)=2M~ . (8.6)

The subtracted dispersion relation now is

G(w2)=M+W M
2 IrnG(w’2)dw’2 (8.7)

M2 (w’2 — M2)(w’2 — w2 — i�)

and the binding energy

B=Mn+Mp_Md (8.8)

can be calculated as

B JIm G~(w’2)dw’2 + 1 jIm G
0(w’

2)dw’2 — i Im Gd(w’2)dw’2 (8.9)
M~ w’2 — M~ ~ M,~ w’2 — M~ ~ M~ w’2 — M~

which can be extended to the more general case ofalight nucleus(Hareand Papini [38] ). Again low

energy dominance restricts the integrations in (8.9) to X’2M~and X2M~ respectively. A’2 is deter-
mined by the relation

X’2M~—M~=A2M~—M~. (8.10)

Since A2 is already known, so is A’2. They yield the correct value of the binding energy. The same
method applied to the singlet deuteron indicates that the system is unbound. The analysis of the
particle--graviton vertex, and in ~he particular problems considered the assumption of threshold
dominance appear therefore to be able to link and explain the neutron—proton mass difference,
the deuteron binding energy and the non-existence of a bound singlet neutron—proton pair.
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9. Photoproduction of gravitons

Photoproduction processes of the type ‘y + e -+ e + g have been first studied by Vladimirov [79].
Perhaps more interesting, at least from the astrophysical point of view, is the interaction of photons
with a static electromagnetic field and the consequent emission of gravitons. Strong sources of

electromagnetic radiation do in fact exist in the universe, among them are quasars, pulsars, galaxies
and in our planetary system, the sun. The linear theory within certain limits is adequate to deal
with them.

Weber and Hinds [83] have studied the photoproduction of gravitons starting from a Hamiltonian

formulation. They have shown that tl1e processes of the creation of gravitons by Coulomb scattering
of photons and by scattering in a magnetostatic field occur and have calculated the cross sections
for a large volume containing a uniform field. Such interactions might lead to observable effects
over a long period of time.

Also Papini and Valluri [64—67] have considered the process of photoproduction of gravitons
in static electromagnetic fields and have applied the results to the study of gravitational radiation
from a variety of astrophysical objects. Radiation rates have been estimated in different frequency
ranges of the electromagnetic spectrum. Photoproduction has been found to contribute a signifi-

cant amount of gravitational radiation.

9.1. Graviton photoproduction in static external gravitational fields

Boccaletti et al. [8] have considered the emission of a graviton by a photon in a gravitational

external field as represented by the two diagrams of fig. 9. 1.
k
1 and k2 are the four momenta of the initial and final photon respectively. p is the four

Fig. 9.1. Graviton photoproduction in a static external field.



102 G. Papini and S.R. Valluri, Gravitons in Minkowski space—time. Interactions and results ofastrophysical interest

momentum of the emitted graviton and q that of the virtual graviton. The matrix element corre-
sponding to the two diagrams is given by:

(pk2 IMI k1> K

2 fb12x(~f~.&0

6p0 — ~L~61/P)(�~k~— �~k’) I
(2ir)

2(8k?k~p°)”2 (p + k
2)

2

X

x (�~k~_e~k~) 0(~Tt T÷612X(..r2&05P0 —~&~)(�~k~—�~k~) 1 2

(k
1 —p)

x [ö120(k1 -- p)1/(k1 — p)~— ~1/0(k1 — p)12(k1 — p)~— ~512~(k1—p)~(k1— p)0 + ö,~.(k1— p)12(k1 —p)0]

x (�~k~— �~k~)5~~(~~1t— ~5rt~)O(q)~

4(k

2 +p +q — k1) d
3q . (9.1)

In the case of an extended source, like a galaxy, the Fourier integral is evaluated from a minimum

r
0 that is the radius of the galaxy, and this imposes a constraint on the exchange momentum q

do =(27r)2ff ö(k~+p°— k~)I(pk2IMIk1)I
2

= k6 m2 j — k?) ~ (~ 2 { states of the graviton } 2 d3 k
2 d

3 p]

8(2it)~ 1k
1 — k2 —p1

4 k?k°
2p°pol gray

= K6m2 f ~0 fd02f d02fd0fd0Q~ ~ 2{...}~). (9.2)

QI”~ \5 p01 gray
o~~iT~0 0 0 0 0

Q is given by

k°
Q —~— (k~— k~)sin 0 sin 02 [k?2 + k~

2— k?k~(l— cosO
2) + k?(k? — k~)cos 0 — k~(k?— k~)

4k?

X (sin 02 C05 02 sin 0 cos 0 + sin 02 ~ 02 sin 0 sin 0 + cos 02 cos 9)_2] . (9.3)

means the sum over the polarizations of the photon and the ~grav 2 { states of graviton} in-
dicates the square modulus of the expression between curly brackets in (9.2) summed over graviton
polarizations. There are four possibilities for the photon and hence four amplitudes for �~ and �2
parallel and then perpendicular to the (k1, ~2) plane. The explicit values of the polarization vectors
are:

�111 = (cos ~ sin 02, 0) , �~ = (sin 02, — cos 02, 0) (9.4a)
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�211 = (cos 02 COS 02’ cos 02 S~fl02’ 5~02), �21= (sin 02, —cos 02,0). (9.4b)

The constant in (9.4) has been taken as the average mass of a galaxy. The cross section in cm2
is of the order of:

~ lO~~/lO~~10_i cm2 . (9.5)

If the target is a galaxy, the cross section is very small and the contribution to the red shift of
the light coming from the distant stars is negligible.

If the energy loss of a photon which emits a graviton is evaluated, with the use of the standard
formula

~ Nf p ~dp, (9.6)

N is the number of galaxies /cm3 considering a path of the order of the radius of the universe, z~k

is found to be:

—~ l0~°e v. (9.7)

Therefore, it follows that the red shift of light cannot be explained as a “tired light” phenomenon.

9.2. The processes of the type ‘y + e -~ e -1- g

The calculations are based on the interaction Hamiltonian introduced by Gupta [33]. The

P1/~k

(a) Cb) (ç)

Cd) (•)

Fig. 9.2. The process ‘y + a e + g.
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diagrams for the process are given in fig. 9.2. The electron may be substituted by other fermions.
Let E1, be the initial energy of the fermion, k01 is the energy of the photon, k02 is the graviton

energy.

When

~‘k01 , ~ k02 (9.8)

the matrix element has the form:

— ie\/
7~ —+ (p

1k2)h(p1e) — (p1k1)e —

(4it)2 ~02 u1/(p2) (p1k1)(p1k2) — u1/(p1) . (9.9)

The diagrams b and c give the main contributions. The effective differential cross section of the
process has the form:

~2 ~‘

02 2
do=(2ir)

2 ~ ~lM(p
1,p2)I2 d~. (9.10)

By squaring (9.9), averaging over initial and summing over the final spins, one obtains

do e
2K2p6 sin40 sin20 - k(~~( p

1(k2 — k1) \2 11)

d~ 8(4it)2 E1 (E2 — p1 cos 0) k01 \(p1 k1) (P1 ‘c2)i’

where 0 is the angle between k1 andp1 and 0 is the angle between k2 and p1. In the relativistic
case, E -‘~ E1 —‘ E2 —. p1 —, p2 and by setting of k1 — k2 — k one gets

o—’e
2K2E2/k2 . (9.12)

For k extremely small, eq. (9. 12) diverges. This infrared divergence is of the same nature as those

present in electrodynamics. In quantum electrodynamics the infrared catastrophe appears and
hence the methods of perturbation theory would be inapplicable. If it is assumed that a significant
number of gravitons exist in outer space, then the transformations of gravitons into photons
must take place when fluxes of gravitons interact with matter.

In particular this effect via the factor sin4 0 in (9.11) could enhance the electromagnetic radia-
tion normally reaching earth from outer space if some objects moved at right angles to the radius
vector from the earth to the object. The measurement of the effect and of the Doppler red shift
would then make possible a complete estimate of velocity and direction of motion of astrophysical
objects (Vladimirov [79]).

9.3. Photoproduction in static electromagnetic fields

The quantization of the linearised form of the gravitational field has in its applications to weak
sources, yielded in general low rates for graviton emission. Strong extended sources of electromag-
netic radiation in the universe like quasars, pulsars, etc. could improve considerably the graviton
emission rate.

The first order diagram for the process is given in fig. 9.3. In fIg. 9.3, 1, q and k are the four
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‘.. I. ~

\

Fig. 9.3. The photon—photon—graviton vertex.

momenta of the graviton, the incoming photon and the photon of the static external field. The �

quantities are the corresponding polarization tensors. Therefore the interaction Lagrangian can be
written as:

- 1/12

e1 — ~ [(�è) (q1211/ + q1/l12) — (�~)2q12q1/ — (qE)(e12l1/ + �p112 -— �12q1/ —

— (�1)(q12è1/ + q1/E12) + (qi) (�Mep+ c~12)— ~ ~(�e)(ql) — (qE) (�l)}] . (9.13)

From it one derives the transition matrix

I(lIMIq>1
2 = (~,r~_~r~__) (-i) ~ Iè

1/12 ~(q~l1/+ q1/l12)(eE) — (c121p + �1/l12)(qe)

+ (e~ê1/÷e1/e12) (ql) — (è1/q12 + e~q1/)(�1)+ (q12e1/ + q1/e12) (lè)

— 2q12q1/(eè) — &,~1/((ql)(�E)— (�l)(qE))}0(K)I
2 (9.14)

where 0(K) is the potential due to the static electromagnetic field. The polarization sum gives 16
large sets of terms which results from the expansion. Using the expression

= 2(flpa~1pf3+ flvcst112P —

and considering the three cases

l)va, p/3
2)v/3, pa

3)pv, ct/3

the summation over polarizations over all the 16 sets of terms is carried out. The differential cross
section can then be written in the form:

do/do = (l/~./2l~2q

0)2(~~)2 (2it)
2 4fd3l ~(q

0 — l~)~3(ql)
2(ee)2— 4(ee)(ql)(qe)(lè)

— ~(el)(ql)(qE)(eE)+4(el)2(qe)2+3(ql)2(ee)(êê)} I0(K)12 . (9.15)
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Since the vertex is covariant a convenient frame of reference can be chosen in order to simplify

the calculations: q is chosen along the ±axis. Then:

q(q0,0,0,q); q
2=0=q~—q2=l2—l~--12 q~.q2 l~=P (9.16)

1 = (la, Ill sin 0 cos 0~Ill sin 0 sin 0~Ill cos 0) (9.17)

1— q = (0,111 sin 0 cos 0,111 sin 0 sin 0, IlI(cosO — 1)) (9.18)

qlq~(l—cos0). (9.19)

Since �
12q

12 = 0, two polarization vectors satisfying this condition are chosen such that:

(1) � = (0, 1, 0, 0)

(2) � = (0, 0, 1, 0). (9.20)

The static Coulomb field is considered first. Then

Ø(K) .Ze Ze (9.21)
1K12 l—q12

and the time like component è does not vanish. Moreover

= 0 ; êè = —1 . (9.22)

Thus the total cross section is given by

o = d~= (2l~2q)(~~) (2it)2 fl~dl
0 ~(q0— l~)d~{—3q~(l— cos 0)2

— ~ sin
20(l ÷cos2Ø) — 4q~(cos0 — l)} (Ze)2/(Il— q12)2 (9.23)

where 0 and 0 specify the orientation of the outgoing graviton or equivalently:

o = 4it~GZ2/e2

r’’72/ 2
—

4..JL~/e
o — 4it (c.g.s. units). (9.24)

The magnetic field is assumed to be that of a dipole. The potential due to the magnetic

field can be calculated in momentum space from the expression for the potential in coordinate
space by the use of the Fourier transformation.

Therefore (9.1 5) is evaluated and on simplification gives:

— cos Q)2 (1 — 5 cos 0) . (9.25)

For the magnetic field of a dipole, the potential is given by

O 4irMcos0’ (9.26)
i IkI
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whereM is the magnetic moment, 0’ is the angle of inclination of the dipole with the direction of
the incident photon. é can be chosen to have components

E = (0, sin ~0 cos 0, sin ~0 sin 0, cos ~0). (9.27)

The total cross section is found to be given by

Om~ (4irM cos 01)2 (211)2 3 (1 (1 —5 cos 0) sin 0 dO dO
2q0

= 256ir
6GM2q~cos2O’ (q

0 = 2it/X = 2iw/c) (9.28)

= l024ir~GM~v
2cos2O’ (c.g.s. units). (9.29)

Eqs. (9.24) and (9.29) agree in order of magnitude with those previously calculated by Weber and
Hinds [83] using the Hamiltonian formulation of the general theory of relativity.

9.3.1. Higher order corrections
In this section the second order radiative corrections are calculated. The four point interaction

of the two fermions, photon and graviton is known from the work of Pagels [62].
Diagrams a and c of fig. 9.4 give the same contribution and are identical. Also diagrams b and d

S.

S.

S.

x

~VJy

m~~~k

Fig. 9.4. The second order radiative corrections.
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are identical. Therefore the polarization tensor 1112Vx0(~’1, q) can be defined,

= 2(T

121/~0+ T121/0~). (9.30)

Also (f I T121/~0Ii>and ff1 T121/0~Ii)give the same contribution. The cross section is calculated initially
for a screened static Coulomb field. The transition matrix element for diagram (a) is given by

Ze
(�121/IT121/~0(l,q, k, m)— I�~n0)=

(2it)8_Ne2~l611G(e121/lJ~(fd4pq12p~xp — m ~ p+~ q -- m ) ~ (9.31)
hr

2 p2 — m2 (p + 1 — q)2 -— m2 IKI2

After removal of the divergences by charge renormalisation one obtains

~ l(�
121/1T121/x0IexT?0)0(k)I

2 =

f 1 (9.32)

—~ (l28irG)Z2e2 40~-~ 1 — cos 0 — 4(1 — cos 0)2 — l0O~—
q~(1 — cos 0 + A’)2 (1 — cos 0 + A’)2 q~(1 — cos 0 + A’)2

The total cross section can now be written as:

o ~ I(flMIi)12 ~(q
0 — l0)d

31 = (211)2 4en(l6irG)(2Z2e2)(2ir)

X 40~_(ln2 +A’ __~_~) —8 +8A’ ln 2 +A’ — 8X’ ~~00m4 1~ (9.33)
q2

0 ~ 2+A A 2+A q~A’(2+A’)J

The correspoi~dingresult for a magnetic dipole potential is

O(211)
2(211)(1611G)4en(411~’bO50)2 [8~~(2 — 2A’ +A’2 ln 2+A’)

~ . (9.34)

9.3.2. The third order radiative corrections

The third order radiative corrections correspond to the diagrams of fig. 9.5.
can be calculated by introducing the polarization tensor for the closed loop with the

crossed photon and graviton lines. T
121/~0has a finite part and a part which has a logarithmic

divergence. The tensor can however, be regularised (Karplus and Neumann [50]). The calculation
of T121/~0is straightforward but very lengthy. After squaring the matrix element and summing over
the polarizations one obtains the total cross section in the low energy approximation as:

(9.35)
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Ii II

4

4,J~Z\~JIQ p-q

x >~

P+I-q 0

k

Fig. 9.5. The third order radiative corrections.

In the relativistic approximation q0 ~‘ m and for a screened Coulomb potential one obtains

f ~~I(eMvIl T +1 T Xa

1 1 I�~fl
0>I

2d3112 vXo I)

Iq _1I2 +A~

I m2

—~-~ ~ [J1~121/ ((l,
2~1/+ l1/q~)~ (q0 + l~)~ + 2g~0 I + ~ ) ~ (9.36)2 P01 L

m
2~ ______

— (l
12g1/~+ l1/g12~)(1 — —i-)

4(fl1)~~+ 2(d) (i + (l
12g1/0 + lV~MO)?7O) ~ — 1I~+A~ d

3 11,

IKI2=Il—qI2=2q~(1—cosO+A
2), A2—A~/2q~. (9.37)

Integration over the angles and the summation over the initial polarizations yield the cross sec-

tion:

A2 m
4 + 1 l+A

2 2+A2
ln~3 —4

6o1a3 ~l +.~-( 2 2 +ln 2
L 2\2+Aq

0 q~A2(2+A2) 18 36 A2

m
2 2 A

2
~ ~+ln2+A2] . (9.38)
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a1 is the first order cross section and a is the fine structure constant. For the magnetic field of a

dipole one obtains

2 2 4 1 2+A
u~=o~l62a2 -~-(2+A2)ln ~2 + l8m +8+4~— ——ln 2 (9.39)

q~ A2 q
2

0 9 A2

10. Synchrotron radiation

Pustovoit and Gertsenshtein [3 11 have considered the production of gravitational synchrotron
radiation from charged particles spiraling in magnetic fields. Gravitational radiation is produced
not only because of the quadrupole moment of the particle in motion but also because of the

electromagnetic stresses caused by the charge. The trajectory of the particle is completely deter-
mined by the electromagnetic interaction since the gravitational interaction is much smaller. The
ratio of the power due to the gravitational losses to that of the electric losses is independent of
energy in the ultra relativistic case

(dE~ /(dE\ l3l6itGM
2 (101)

\dt /giav loss! \ dt /ekctric.loss ~ e2

M is the mass and e the charge of the particle.
Another possibility of producing gravitons as high frequency radiation is by collisions between

atoms and particles. A good example is the Coulomb scattering of electrons in the interior of a
star. Unfortunately, the rate of photon emission is very small compared not only with the rate of
photon emission, but also with the rate of neutrino—antineutrino pair emission calculated by
Gandelman and Pinaev [30].

Gravitational synchrotron radiation from particles in stationary external gravitational fields has

been extensively studied in recent times. It has in fact been suggested by Misner [55, 56] that a
gravitational synchrotron effect might be responsible for the events observed by the Maryland—

Argonne gravitational wave detecto’rs. Because of the strong focussing effect and the proximity
of the solar system to the galactic plane, the amount of radiation necessary to explain Weber’s
observations would be reduced substantially if a hypothetical source at the galactic center emitted
gravitational synchrotron radiation into the galactic plane. Several models have been discussed in

the literature involving radiation from relativistic particles in orbit around massive spherically
symmetric or rotating black holes. None seems to yield a possible astrophysical source of synchro-
tron radiation. A comprehensive review of the subject has been published by Breuer [14].

11. Terrestrial sources of gravitational radiation

11.1. Induced emission of gravitons

Weber [84] has described the production of gravitational waves by large vibrating piezoelectric

crystals and found that the production of gravitational radiation by microscopic systems is insignifi-
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cantly small. The gravitational decay of excited states of nuclei or molecules takes place at too

slow a rate to be of any significance as a source of experiment in the terrestial laboratory. It is
however possible in principle that the gravitational radiation from such systems can be increased
greatly by using induced emission at resonance. This process has been considered by Halpern and

Laurent.
An apparatus working on the principle of induced emission would be the gravitational counter-

part of the “laser” and has been called a “gaser”. The “gaser” conceived by Halpern and Laurent
[36] consists of a material the microscopical parts of which can be excited by external means. Be-
sides the production of gravitons, induced emission would produce an avalanche of photons in the

direction of the rod, which could however be removed, by means of mirrors. The induced emission
would therefore be specific in the sense that gravitons would increase the emission of gravitons

and not that of photons.
The cross section for the process of induced emission at resonance is:

0geom ~2 , (11.1)

where A denotes the wavelength of the emitted radiation. If this condition could be realized the
gaser would be as effective as the laser. However, the extreme weakness of the gravitational inter-

action and the unavoidable competition from perturbations prevent such a possibility. More realistic
limits can be obtained as follows:

Let 6w
1 denote the line width due to the electromagnetic interaction and 6w2 the spread in

frequency due to all disturbances. The two effects can roughly be taken into account by writing
the cross sections as

a = X
2/r6w

1 (6w1 > 6w2)

u=X
2/r6w

2 (6w2>6w1). (11.2)

r is the lifetime of the excited state as calculated from the gravitational interaction only. For a
quadrupole transition

l/r~
2w5d4M2 (11.3)

where x2 - 2 . 8irG/c4 = 4.14 X 1048 g1 cm’ s2. G is the gravitational constant, Mis the mass

of the radiating particle and d is a length of the order of magnitude of the orbit of the particle,

wkc (11.4)

and

6w
1 = w

5d4e2 6w
2 = ~w , (11.5)

where ~ is a measure of the frequency spread. Also the mean free path is given by

11/aN, (11.6)

where N is the number of microscopic systems/cm
3. By using the expression for l/r, one obtains

— e2 1 IX\4 e21= .~ when ~ <— (11.7)

X2M2 ~ \dI ~
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and

— z~ A2 IA\4 e2
1— when ~—j >— . (11.8)

x2 Nd4M2 \d/ i~

The mean free path 1, the characteristic length of the gaser, is defined as the distance over which
the number of gravitons double. The minimum of 1 is given when

Amin =d(e2/~)’I4 . (11.9)

This gives

lmin = e~/~/(k2M2Nd2) . (11.10)

In natural units for nuclei e 10~,M ~ cm1, N 1023 cm3, d 1012 cm, ~

lO32 cm. Then

lmin l038..,/~cm. (11.11)

Such a large number excludes of course nuclei as the source of radiation in a gaser. The smallest
value for ~ is in fact similar to that of the Mössbauer experiment ~ I 0—’~).

Therefore (11 .1 0) suggests that larger systems than nuclei should be tried as sources. If big mole-
cules or systems comparable to our microscopic systems are used, the wavelength of the radiation
is of the order of that for vibrational transitions (Schiff [71]),

X~c(mM)1!2 d2 (11.12)

where m is the electron mass. Also

M pd3 , p 1036 cm4 (corresponding to I g cm—3). (11.13)

Therefore:

X~..~/pmd~. (11.14)

Comparison of(1 1.14) and (11.9) gives:

X > ~ if d ~ (e/mp)’15 (1 /~)1/10 (11.1 5)

If lO_14, p 1036 cm4

X>Xmin if d~’108cm. (11.16)

The above condition for d is fulfilled for all molecules.

The condition
-~ A2 2

1= — if (d/Xy~>~— (11.17)
x2 Nd4M2

can therefore be used.

Insertion of (11.14) and the approximate relationN~ad3 into (11.17) gives

1038 ~ cm (formolecules). (11.18)
x2 ~



G. Papiniand SR. Valluri, Gravitons in Minkowski space—time. Interactions and results of astrophysical interest 113

This excludes also vibrational and rotational transitions in molecules as sources for the radiation

in a gaser. For molecules the attainable ~, is of course, much greater than it is for nuclei.

11.2. Super radiatingstates

Nagibarov and Kopvillem [57] discuss the possibility of creating a super radiating gravitational

state (SGS) from quantum systems that already are in a super non-radiating electromagnetic state
(NES). The ratio of gravitational and electromagnetic power J(~)and j(e) radiated by free particles
in free space in interatomic and internuclear transitions are respectively

= jg~je ,.~ l042 (interatomic transitions) (11.19)

17 = jg/je ,~, 10_36 (internuclear transitions) . (11.20)

It is shown by Dicke [94] that the use of lasers increases i~by a factor NCA
3Q as a result of a

decrease in the spontaneous electromagnetic radiation in the resonator; and by a factor r~r1N
as a result of retaining the photons in the resonator where N~is the number of resonator modes,
Q is the resonator figure of merit, A is the photon wavelength, r~and ‘r are the photon lifetime in
resonator and duration of particle phosphorescence in free space and N is the total number of
particles. Therefore i~could be increased by 1015 _.lo2o times. In addition, I~ increases by about
N’times because of the coherence of the gravitational waves. A further increase in 17 can be obtained

by using the directional property of radiation from large systems. The intensity of the coherent

part of the spontaneous emission of such systems is

jg = fI~(K) ~ [ex~fi (k — ~ a~ok~o)- r~} exP(_i(k — ~ a~
0k~0). rq)]~ (11.21)

where i~~~(K)is the spontaneous emission intensity in a unit solid angle df2 in the direction of the
wave vector K; r~and rq are the radius vectors of the radiating particles, a~0are 1, and are

the wave vectors of the exciting electromagnetic pulses (~is the serial number of pulse sequence,
and 0 numbers the wave vectors within the limits of one pulse in the case of multi quantum exci-
tation). To satisfy the equality K = ~ in the exponential of (11 .21), two quantum excita-
tion has to be used.

It is possible to excite the systems simultaneously by two laser pulses with:

k11(e) = k~1n0, k12(e) = —k~2n0 (11.22)

with carrier frequencies

— v0 — 0 1123
- 2(1 + l/~)’ ~l2 - 2(1 — l/~) ( • )

Two quantum electromagnetic excitation is physically equivalent to a certain effective frequency

= + ~12 ku0 = k~. (11.24)

From (11.21) it follows that

j(i)..... I(i)k(i)pN
2(IILV)2 sin20 (11.25)
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0’~-’v~’E11E12ji
2z~t (11.26)

where E
11 and E12 are the electric field intensities of the electromagnetic wave, /1 the dipole ma-

trix element, z~tthe duration of the exciting pulse, and L the length of the sample in the n0 direc-
tion.

The equation (11.25) is similar in form to (11.21), but is obtained taking into account the dif-

ference between photon and graviton velocities in matter with the super radiating electromagnetic

state (SES) completely excluded, thus increasing 17 further.by

N(l/L~0)
2times (forN= 1019, L = 1 cm, t’

0 = 310 sec’) , 77 = l0~times. (11.27)

There is no electromagnetic radiation at frequency ~ at all in the n0 direction.
The occurrence of super radiating electromagnetic generation is avoided by the excitation of

gravitational echoes in the two quantum mode. The problem of reception has also been discussed

by Nagibarov and Kopvillem. It is best to receive pulses of coherent gravitational waves with the
aid of analogous quantum systems. An SES is first excited which decays after a time T ~ T2 as
a result of the inhomogeneities of the local fields. In the same way a system is obtained in which
energy and information on the phase and on the wave vectors of the exciting pulse are stored and
this makes directional reception possible. At an instant of time T < t < T2 this system is subject
to pulses of gravitational and laser beams, in which the directions of the wave vectors and the fre-
quencies are such that an SES is produced in the system. After a time 2t the system begins to
generate, in the required direction, coherent electromagnetic waves. In such a method of reception,
the gravitational pulse serves as the means that permits at the required instant of time and in the
required direction, the release of the energy stored in the receiver. Though there is a difference in
the angular distributions of the radiation intensities of the mass and electric quadrupoles, it is still

possible to excite high frequency radiation by means of an alternating electric field. In regular
lattices containing excited nuclei, SES and NES can spontaneously occur for ~yquanta and conse-
quently SGS can occur at the frequency of the y quanta relative to the nucleonic mass quadrupoles.
The mass quadrupole can be excited by means of an electric dipole transition, making it possible
to let the mass quadrupole to emit at maximum intensity.

11.3. Continuous generation ofa gravitational beam

Nagibarov and Kopvillem [58] have considered the use of superradiant states of quantum sys-

tems for the generation of coherent gravitational continuous waves in the optical region. It is the
graviton analog of stimulated optical and acoustic emission.

It is well known that in order to generate gravitational waves it is necessary to excite oscillations

of mass quadrupole moments. The intensity of the radiation of the gravitational waves by an iso-

lated quadrupole is proportional to the sixth power of the circular frequency of the oscillations

Ig~wg
6. (11.28)

Excitation of oscillations of electric multipoles by an external electromagnetic field leads also
to oscillations of the mass multipoles. Therefore, lasers can be used for the excitation of mass
quadrupoles in the stimulated emission regime. To excite gravitational waves in the range 1012 ~

wg ~ 1014 rad/sec, the rotational and vibrational levels of the molecule are used. In the range
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1 ~14 ~ wg ~ 1 ~ rad/sec the electronic levels of atoms and molecules are used and in the 7-ray
frequencies internuclear transitions are used.

The generation of gravitational radiation, in the considered range of frequencies wg, is effected

by a system of N ~‘ I mass quadrupoles, the linear dimensions of the system being ~ Ag (wave-

length of the gravitons). Due to interference effects;

‘g’•~~A~w~. (11.29)

Since for the reception of GR it is necessary to record at least one quantum, the efficiency
of the discussed method of generation of reception of GR increases with frequency like w~.

In media in which n (the refractive index for e.m. waves)> I, upon excitation of GR in the single
quantum regime

A~w~ (11.30)

because of the difference between the wave vectors ke of the photons and kg of the gravitons with
the same frequency. To avoid an additional decrease of ‘g by a factor A~,it is necessary to excite

the emission of GR in the two quantum regime by using two lasers, which gives

k~~= kg . (11.31)

The above equality in single quantum excitations can apparently also be attained in inverted systems.
In dense gases, n = 1, ke = kg.

A serious obstacle to the experimental realization ofGR generation is the powerful e.m. radia-
tion which necessarily accompanies GR.

To decrease the intensity I~ of the electromagnetic radiation the following prescriptions are

useful.
1) The system should be excited with the help of two lasers for which effectively ke = kg; then

the intensity of e.m. radiation at frequency w~decreases by a factor A2 compared with the case

of single quantum excitations.
2) One should excite systems in electromagnetic resonators which have no mode at frequency

wg, at least in the direction of kg; this in general suppresses the coherent spontaneous e.m. radiation
with ke = kg.

3) The direction of effective ke = kg should coincide with one of the minima of the intensity of
the spontaneous emission of the isolated electric quadrupole. The method for the reception of GR
is the inverse of that proposed above. A quantum statistical theory can also be developed for the

generation of GR with the aid of lasers at the electronic levels of atoms and molecules, at the rota-
tional and vibrational levels and at the Landau levels. ‘g are listed in table 11 . 1. The parameter of
the receivers and the intensities of the light ray at the receiver output are listed in table 11.2.

Table 11.1.
GR generation power in the stimulated induction regime (from Nagibarov and Kopvillem [581).

Nature of levels m

0 V V

1

1V S Icoh(wg)/sin

2e

I 1) and 12> (rad/sec) (g) (cm2) (cm3) (cm3) (cm2) (erg/sec)

1016 10_27 iO_16 106 1021 io3
1013 iO_22 iO_iS 106 1023 1o3 io~°
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Table 11.2

Power at the receiver output in the derection of a gravitational ray in various reception methods (from Nagibarov and Kopvillern

[58].

Methods of Nature of levels Receiver parameters Power at

GR reception Ii> and 12) . * receiver
G (erg) ‘~S,t Wph _~~)ph+1I~ T

2 out ut

of ~ p(erg/sec)

1) With photon rIel 1016 10—10 iO~ loll 1O~ 1O~ 106 ~O’~
pumping

t1rv 1013 1010 iO~ 108 iO~ 10~ i0~ 10h1

2)Withphoton ~eI 1016 1016 i0~ 10—18 lO~

pumping ~rv 10~ 1013 — iO~ 1018 — 1O~

W2 &~)2 T Wc~Wph ~-‘~~~pr Icoh(Wph)

3) Phonon 11e1 5X1015 10~ 108 io~ 1015 1018 l0~~
graviton 11rv 5X1012 i0~ 108 102 1012 10_18 i05

11.4. Stimulated generation of coherent gravitational radiation

A system of N identical particles with a discrete spectrum is considered. Il> is the ground state
of the isolated particle. 12> is one of its excited states with energy E

2 — = w0. The unperturbed
spectrum of such a subsystem is described by the operator

~ =w0~ R’~. (11.32)

Its interaction with the external generators with effective wave vector k and effective frequency
w can be represented in the form:

~r =AkR k~+A~Rk (11.33)

Rk = ~ R’,. =R~+iR’2 [R’,.,R
1] 2R’

3 (11.34)

[R3,R’] =—R’ . (11.35)

R’~is the component of the operator of the effective spin R = ~, r1 is the radius vector of particle
j. A,,~ is an operator describing the interactions.with the external generator.

The intensity of the stimulated gravitational emission (SGI) is given by:

I(Wg) = ,•fI(kg) d~ (11.36)

I(kg) = 10(k8) ~ [i — cos 01 tanh 2kBT + ~ tanh
2 (2~T)~1 ~ exp{i(kg—k

1 _k2).rj,}]

(11.37)

where d~is the solid angle element, r1, = r1 — r1, kB is Boltzmann’s constant, T is the temperature,
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cosO1 =(I +(T2z~w)
2+w~T

1T2)
1 (1 +(T

21~w)
2) (11.38)

sinO
2(l+(T2~w)

2+w~T
1T2Y

1Iw~IT
2

2~w (11.39)

= W

0 — IWgI ; IWgI = 1w1 ±w21 (11.40)

Wr = IUI9~’rI2>I‘ ~r = ~ (11.41)

Io(kg)=i:[~~D~

—~ ~ ~ (11.42)
12,8

= \/~(D~ + D
m

2) — , D~= (11.43)

~ = —~~/~(D~+ D
m

2) — ; D~,= ~ = ~(D~ — D
m
2) (11.44)

~ D~=D~.=*(DmI_Dr)

Dg’ = ~a[3L~ — L
1(L1+ 1)] , a

0 = m0Q0(L
1(2L1— l))’ (11.45)

m
0Q0 = (L~~L~Ifpj(3z’2— r’

2)dv’IL1L1 , L~,= + iL~,,; (11.46)

k
1 is the gravitational constant; j.i, 6, x = x, y, z; ~12 are the direction cosines of the vector kg, dv’

= dx’ dy’ dz’, Pg ~S the density of the electron mass at point x’, y’, z’ of the electron shell of the
particle /, m0 the electron mass, L~.are the components of the effective orbital motion of the
particle.

In (11 .37) the coherent part of the gravitational radiation describes the factor containing

~-exp{i(kg_k1 —k2),~1}

1*!

At kg = k1 ÷k2, this function has a sharp maximum. To obtain the maximum possible I(Wg) it

is necessary that this direction coincides with one of the maxima of J~(kg). The power of the
coherent part of the SGI is given by

Icoh(wg) = 1o(n0kg)(A~N
2/4S)sin2O

2 tanh
2(wg/2kBT) (11.47)

4S is the area of the face perpendicular to k
1 + k2 = n0 1k1 + k2I, S/Agl0 ~ I (l~= length of sample,

Ag = wavelength of the generated gravitons, n0 coincides with one of the maxima of I(kg)),

= (wg/

2n)(n + 1); w
2 = (wgI

2n)(n — 1) (11.48)
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(sin 02)max = IWrI T
2 (1 + w~T1T2Y

112 (when ~.w= (1 + w~T
1 T2)

112 /1’2) . (11.49)

If the generator power is such that

I~t’rI~ 1/~,/T~T
2, (sin 02)max =~/72/T1. (11.50)

The transition Ii> —* 12> is realized as a result of absorption of two quanta, when

W1 + W2 = We . (11.51)

Then it follows that

(
2t9((Ia>(aI9(~ll) ~

114’rI = ~. + —---——-— . (11.52)
0 w

0 -- w2 + iF0 w0 — w1 + iF0

and ~ are respectively the Ham iltonians of the interactions’of the first and second electro-

magnetic generators with impurity I, and F0 is the width of level a.
If the transition I1>-÷12> is a result of absorption of a quantum w1 and creation of a quantum

w2 (w8 = w1 — w2), then

(lI9t~_a>(aI9~~I2>(
2I~’~Ia>(aI~~_II>

IWrI= ~ —~—---——+ —~ . . (11.53)
& w

0 + + iF0 w0 — w1 + iF0

Also in this case

sin &~/sin13 = (w1 — Wg)IWi . (11.54)

& is the angle between n0 and k1 f3 the angle between n0 and k2

Wg +-~(w1 +w )1 (11.55)
L

2(W
1 — w8)

2Wg g

1W —WT

—tan~, &sinh(~~_~ sin13). (11.56)
\ W

1 /

If the GR is excited by a system with an equidistant spectrum and an effective spin R> ~

+ 1)2 çsin2o2 tanh
2 (~‘~). (11.57)

When R = ~, (11.47) is obtained.
For the case of GR generation using Landau levels

sin2 02 = ~ T
22z~w) (1 + (T2 ~w)

2+ (~!~)2 ) -2 , p
0 = (411ce/H~)

1I2 . (11.58)

e is the electron charge and H~is the Z component of the constant external magnetic field. The
matrix elements of the quadrupole moment between the states whose Landau quantum numbers

n, differ by 1, are
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+ 1)(n1 + 1+ 1)}h/2 (11.59)
eH~

where 1 is the orbital quantum number and E the intensity of the alternating electric field.

The Brans—Dicke theory [131 predicts that the pulsations of the mass density should lead to
generation of scalar gravitational waves. For a system of N particles pulsating coherently with fre-
quency Wg,

4k1 xIAI
2w~A~N2

‘coh(Wg) = 9 1 +6x 4S sin 02 tanh2(wg/2kBfl (11.60)

kg=ki +k
2 k2 k1(1 +4x)/(1 +6x) (11.61)

A = (11 fdv’r’2ipg12> . (11.62)

k2 is the gravitational constant with allowance for the scalar field. k can be either > 0 or <0, or

IkI —~ I (Sexl [72], Dicke and Goldenberg [34]). The oscillations of the quantity A can also be
excited by lasers through oscillations of the charge density of the electron cloud, of the nuclei in
the molecule, or of the nucleons in the nucleus.

Nagibarov and Kopvillem discuss also methods of detecting rays of coherent GR.

11.5. Lattice vibrations in solids

The quantized model of a simple cubic lattice serves to study the gravitational radiation resulting

from lattice vibrations. The interaction of electromagnetic radiation with solid proves the existence
of optical transitions and the Brillouin effect. In both cases an extended crystal contributes co-
herently to the emission. The gravitational analog of these processes were not considered in the
works of Mironowsky [54] and Weber [82]. Mironowsky apparently did not take into account
the conservation of crystal momentum, which applies even to a continuum as the limiting case of

a crystal lattice, and his result has to be modified.
Halpern and Desbrandes [35] have considered a simple model of a crystal lattice and investigated

its gravitational radiation. The lattice is quantized but the gravitational Tield remains classical. The
work is closely patterned on that of Halpern and Laurent [36]. The emitting bodies have extensions

that are large compared with the wavelength and hence the multipole approximation cannot be ap-
plied. The gravitational radiation emitted by the quantum transitions of solids has been considered
by Halpern in the semi classical, linear approximation and the procedure used is analogous to that
of the transitions of microscopic systems discussed by Halpern and Laurent [36].

The linearized theory relates the classical gravitational field G°
12to the energy momentum

density of matter T&12(x) as;

= l6irGT°12

where

G&12\/T~g&12 , gdet(g
012). (11.63)
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When r = Ix -- x’l ~ A, the wavelength of the GR, as well as the extension of the source, then

terms of higher powers in 1 /r can be neglected and the following result is obtained,

x’ x’

G°12(x)= 77012 + 2Gf 12 T~°
00(x’)d

3x’. (11.64)

T~°denotes the value of T°°(x’)retarded with respect to the point x’. Therefore the quadrupole
approximation can be replaced by the retarded quadrupole approximation.

There are N atoms per periodocity interval for the lattice. For the nth particle the mean displace-
ment is

X~(=Rn+ü(n). (11.65)

Assuming central forces,

V(x
1 N)~ ~ U&12(Rn_Rm)u

0(n)u12(m),

— — n,m (11.66)

U&
12(Rm —R12)—F12(n),

where F12 (n) is the iz component of the force acting on the nth particle as a result of a unit dis-
placement from equilibrium position of the mth particle in the a direction. The equation of motion

of the system is given by

mu’~(n)— �I~U&12(Rn—Rm)u
12(m). (11.67)

The solutions of (11.67) constitute lattice waves.

The angular frequencies of the normal modes of the system are given by

w(A) = w
0 sin (air/A), w0 =

a is the lattice constant,

U00’(cp/t) = —76006120 . (11.68)

pIt (p = 1, 2, 3) are three mutually perpendicular vectors parallel to an equal in length to each

one of the edges of an elementary cube of the lattice and c = ±I. The gravitational waves propagate
even in the crystal with a velocity almost equal to that of light because their interaction with
matter is extremely weak.

The Hamiltonian for the quantized system can be expressed in terms of Hermitian operators

a~anda~as:

H = ~ w~(k){a~(k)a~(k)+ ~}(IkI = I~+ ~‘l = w + W = w”). (11.69)

A normalized state of n quanta (phonons) of polarization A and momentum ~ as well as n’ phonons

of polarization ~.‘ and momentum ~‘ is represented by

(n! n’!Y
112(a~(~)Y~(a~,(p)y1’I0>= In(A~)n’(A’P)>, (11.70)

where I 0> is the state of zero phonons.
The contribution due to the rest masses is m(~~x

0 (n)x12 (n)Ir)R 00 and the matrix element
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then becomes

u0(n)u12(n)
((n — I) (A~)(n’— 1) (A’~’) ~ — n(A, ~5)n’(A’~’)>. (11.71)

n r

x0(n) can be replaced by 110(n) in (11.71) because only the displacements i~contribute to (11.65)
after the time derivatives are taken. Also hr can be replaced by R the constant distance between

the field point and the centre of the crystal. Therefore (11 .71) becomes

(nn’)
112 (w(~)w’(p’))1/2~ ~ exp{i(~+~’)~Rn — i(w + w’)t}. (11.72)

The crystal momentum is conserved for the factor exp ~i(~+ fl’) . R} compensates the retardation

effect. The whole crystal can contribute to the emission. The flux density in the neighborhood of
the Z axis is

t3( ) G(w+w’)6nn’ 2GEE’w2 (11 73)0 32irR2w’2 irR2

with E = nw, E’ = n’w’ n’w.

The total rate of radiation emitted is

R21i2t~ GEE’ w/L Gpp’wq2L (11.74)

where p = E/ V is the energy density and V = qL where L is the length of the crystal in Z direction.
i/i is the solid angle and is s4ir. w”L. The above results are valid in the harmonic approximation.

12. Results of astrophysical interest

In this section are collected those results which are more interesting from the astrophysical

point of view. They are mainly classified according to the particular astrophysical object to which
they refer. It might be worth mentioning that the results obtained by Papini and Valluri [64—66]
are obtained from application of the results obtained in section 9.3.

a) The Sun

The emission power of gravitons by photoproduction from the Sun in the infrared region has
been calculated (Papini and Valluri [64—67]) to be 5 X 1012 erg/sec corresponding to a flux at the

Earth of 1.7 X 10—2 gravitons/cm2 sec. Such a value is subject to variation depending on the data
available for the sizes of the chromosphere, the corona and the magnetic field. This result does not

differ very much from the values 6 X 1014 erg/sec and 5 X 1015 erg/sec given by Weinberg and
Carmeli as indicated by eqs. (5.42) and (5.50) respectively. Bremsstrahlung and photoproduction

in the sun therefore constitute the strongest source of GR in our planetary system. Classical
quadrupole radiation for the Jupiter Sun system follows in intensity with 7.6 X 1011 erg/sec in an
entirely different frequency range. Quite in general, thermal collisions may provide the most im-
portant source of gravitational radiation in the universe.

b) Quasars

Estimates for emission power from bremsstrahlung are not yet available and might be difficult
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to make since quasars are still not well understood objects. Estimates for photoproduction by

3C273 in particular have been given by Papini and Valluri [67]for various regions of the spectrum.

They depend on presently available data for the quasar’s magnetic field and suffer from the same

uncertainties. Again emission peaks at infrared frequencies with an upper limit of 5 x 1032 erg/sec.
The corresponding flux at Earth, assuming the distance of 3C273 to be 500 Mpc, is --3 X 10—26

erg/cm2 sec, indeed negligible, and much smaller than the fluxes of —. 1012 erg/cm2 sec due to

broad band bursts produced by large explosions in quasar and galactic nuclei as conjectured by

Press and Thorne [691.A considerable amount of GR, perhaps — 1 028 erg/sec, could also be
emitted by photoproduction in the gravitational field of a quasar (Boccaletti et al. [10]).This

figure is considerably higher than the gravitational luminosity, 1025 erg/sec, of iO~supernovae

(Vladimirov [791). 3C273 in the above optical range would emit at the rate of—5.5 X l0~~erg/sec
(Papini and Valluri [671).Since there may be one quasar every 100 galaxies, the quasar contribu-

tion to the overall graviton density in the universe may be non negligible.

c) Seyfert galaxies and galactic centre
Photoproduction in the infrared can account for up to — 3 X 1025 erg/sec for NGC 1068 and

—8 x 1022 erg/sec for the galactic centre (Papini and Valluri [67]). The corresponding fluxes at
Earth amount to —2 X 10— 27 erg/cm2 sec and —2 X lO_27 erg/cm2 sec respectively, again smaller
than the outbursts predicted by Press and Thorne [69]. Over long periods of time their contribu-
tion to the graviton background in the universe may be sizeable. Much higher is the estimate

1038 erg/sec given by Mironovskii [53,54]for gravitational luminosity of a galaxy due to the motion
of its double stars. The gravitons in this case have extremely low frequencies. Graviton photo-
production in static external gravitational fields cannot explain the red shift of light as a “tired

light” phenomenon. As shown in section 9.1, the results of Boccaletti et al. [8]indicate that even

if the external gravitational field is that of a galaxy the cross section for the process is only

10_i cm2 and the energy loss of a photon is only _~l0_50eV.

d) Pulsars and neutron stars

Unlike the classical problem that admits radiation only if the axis of the magnetic dipole moment

of the star and its rotation axis are at’an angle, in the quantum problem there can be emission of

GR also with complete alignment. Estimates for NP0532 have been given by Papini and Valluri
[65],for photo-production in the magnetosphere of the star, in different frequency ranges. They

find P P—’ 3.6 X 1020 erg/sec for radio frequencies, P — 3 X 10~’erg/sec in the optical range and
4.1 X 1025 erg/sec in the infrared region and estimates for X-ray and 7-ray regions are 6.2
x 10~erg/sec and 4.1 X l0~’erg/sec respectively.

Shortly after birth pulsars possess external electric fields which are then gradually neutralized
by the near plasma charge separation (Pacini [61]).For hot neutron stars the surface luminosity

can be —. 1038 erg/sec (Tsuruta and Cameron [751) and is peaked in the soft X-ray region. By

assuming an electric field at the surface 1012 V/cm, one obtains

P— 2.8 X 1021 erg/sec.

Magnetic fields of intensity upto 1015 gauss can exist within neutron stars (Vandakurov [781).
The power emitted by a pulsar with L~ 1038 erg/sec isP— 6.2 X l0~~erg/sec and possibly higher
values soon after birth and the radiation is peaked in the soft X-ray range. The power emitted via
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photoproduction can therefore exceed the quadrupole contribution for pulsars of ellipticity
< l0~.It is interesting to speculate that photons produced in the interior of the star in the

presence of strong magnetic fields may also be converted into gravitons that could then escape

and therefore play a role in the cooling of the star. It also appears that the gravitational luminosity

of a neutron star can be larger than both gravitational (1015 erg/sec) and electromagnetic

(1 O~erg/sec) luminosities of our sun. Comparable in efficiency with photoproduction is gravita-
tional bremsstrahlung in neutron-neutron scattering. Boccaletti estimates infact P — 1027 erg/sec

at frequencies 1022 Hz for a canonical neutron star as indicated in eq. (5.56). One should there-
fore expect the presence in the universe of a background of GR distributed over the complete
spectrum and due to the overall population of neutron stars. It is difficult at this stage to gain a

perspective on the general graviton density in the universe. Attempts to estimate it have been made

by Boccaletti et al. [10]taking into account various processes that can both produce and annihilate

gravitons. For an universe with an age of 1018 sec they find that the situation is far from equilibrium

and that the gravitons are still accumulating. They conclude that the mean density of gravitons in

the universe may be 10— 19 erg/cm3, smaller therefore than the cosmological background of
electromagnetic radiation (_~l0_14erg/cm3). This conclusion may however be premature not only

because information as to the number, distribution and efficiency of strong sources in the universe
is still missing, but also because the efficiency of the quantum linear processes so far studied can
indeed be at least as high as that of the classical ones. Bremsstrahlung and photoproduction in
particular may significantly increase the estimates given in the literature.

References

[1] A. Ashtekar and R. Geroch, Rep. Progr. Phys. 37(1974)1211.
[2] R.D. Amado, Phys. Rev. 132 (1963) 485.

[3] B.M. Barker, MS. Bhatia and SN. Gupta, Phys. Rev. 182 (1969) 1387.

[4] B.M. Barker, RD. Haracz and S.N. Gupta, Phys. Rev. 149 (1966) 1027.
[5] B.M. Barker, RD. Haracz and S.N. Gupta, Phys. Rev. 158 (1967) 1498.

[6] B.M. Barker, RD. Haracz and S.N. Gupta, Phys. Rev. 162 (1967) 1750.
[7] AM. Bincer, Phys. Rev. 118 (1960) 855.
[8] D. Boccaletti, V. Dc Dabbata, C. Gualdi and P. Fortini, N. Cim. A48 (1967) 58.

[9] D. Boccaletti, V. De Dabbata, C. Gualdi and P. Fortini, N. Cim. B60 (1969) 320.
[101 D. Boccaletti, V. De Sabbata, C. Gualdi and P. Fortini, N. Cim. B54 (1968) 134.

[illD. Boccaletti, V. De Sabbata, C. Gualdi and P. Fortini, N. Cim. BI 1 (1972) 289.

[12] D. Boccaletti, Lett. N. Cim. 4 (1972) 927.
[13] C. Brans and RH. Dicke,Phys. Rev. 124 (1961) 925.

[14] R.A. Breuer, Gravitational Perturbation Theory and Synchrotron Radiation (Springer-Verlag, 1975).

[15] M. Carmeli, Phys. Rev. 158 (1967) 1248.

[161M. Davis, R. Ruffini, W.H. Press and R.H. Price, Phys. Rev. Lett. 27 (1971) 1966.

[17] 5. Deser and P. van Nieuwenhuizen, Phys. Rev. Lett. 32 (1974) 245.
[181 5. Deser and P. van Nieuwenhuizen, Phys. Rev. D10 (1974) 401.

[19] 5. Deser and P. van Nieuwenhuizen, Lett. N. Cim. 11(1974) 218.

[20] 5. Deser and P. van Nieuwenhuizen, Phys. Rev. D10 (1974)411.
[21] B.S. DeWitt, Phys. Rev. 162 (1967) 1239.

[221 B.S. DeWitt, Phys. Reports 19C (1975) 295.

[23] S.D. Drell and H. Pagels, Phys. Rev. B140 (1965) 397.

[24] I. Duck, Nuci. Phys. Bi (1967) 96.
[25] F.J. Dyson, Phys. Rev. 75 (1949) 1736.

[261 L. Fadeev and V. Popov, Phys. Lett. 25B (1967) 29.



124 G. Papini and SR. Valluri, Gravitons in Minkowski space—time. Interactions and results of astrophysical interest

[27] M. Fierz, Helv. Phys. Acta 12 (1939) 3.

[28] M. Fierz and W. Pauli, Proc. Roy. Soc. 173 (1939) 211.
[29] V.A. Fock and D. Ivanenko, Compt. Rend. 188 (1929) 1470.

[301 G.M. Gandelman and V. Pinaev, Soy. Phys. JETP 10 (1960) 764.

[311 M.E. Gertsenshtein and WI. Pustovoit, Soy. Phys. JETP 14 (1962) 84.

[32] D. Gross and R. Jackiw, Phys. Rev. 166 (1968) 1287.

[33] SN. Gupta, Proc. Phys. Soc. 65A (1952) 161, 608.

[34] H.M. Goldenberg and R.H. Dicke, Phys. Rev. Lett. 18 (1967) 313

[35] L. Halpern and R. Desbrandes, Ann. Inst. Henri Poncaré 11(1969) 309.

[36] L. Halpern and B. Laurent, N. Cim. 33(1964) 728.

[37] L. Halpern, N. Cim. 25 (1962) 1239.

[38] M.G. Hare and G. Papini, Nucl. Phys. B34 (1971) 200.

[39] MG. Hare and G. Papini, Phys. Rev. D4 (1971) 684.

[40] SW. Hawking, Phys. Rev. Lett. 26 (1971) 1344.

[41] S.W. Hawking, Comm. Math. Phys. 43(1975)199.

[42] D. Ivanenko and A. Sokolov, Vestnik. Moscow State Univ. 8 (1947) 103.
[43] D. Ivanenko and A. Sokolov, Quantum Field Theory (1952) p. 678.

[44] D. Ivanenko, Theories Relativ. Gravit. (Royamont, 1959).

[45] D. Ivanenko and A. Brodsky, Acad. Nauk. 92 (1953) 731.

[46] R. Jackiw, Phys. Rev. 168 (1968) 1623.
[47] J.M. Jauch and R. Rohrlich, The theory of Photons and Electrons (Cambridge, Mass., 1955) p. 330

[481 l.Y. Kobzarev and LB. Okun, Phys. JETP Lett. 16 (1963) 1343.

[49] M.P. Korkina, Ukr. Fiz. Zh. 5 (1960) 762.

[50] R. Karplus and M. Neumann, Phys. Rev. 80 (1950) 380.

[51] L.D. Landau and EM. Lifshitz, The Classical Theory of Fields (Addison-Wesley, 1962) Sect. 66—71, 104.

[52] S. Mandelstam, Ann. of Phys. 19 (1962) 25.

[53] V.N. Mironowskii, Soy. Astron. 9 (1966) 752.
[54] V.N. Mironowskii, Astron. Zh. 42 (1965) 977.

[55] C.W. Misner, Phys. Rev. Lett. 28 (1972) 996.

[56] C.W. Misner, Bull. Am. Phys. Soc. 17 (1972) 472.
[57] yR. Nagibarov and U.Kh. Kopvillem, Sov. Phys. JETP Lett. 5 (1967) 360.

[58] V.R. N~gibarovand U.Kh. Kopvillem, Soy. Phys. JETP 29 (1969) 112.

[59] yR. Nagibarov and U.Kh. Kopvillem, Soy. Phys. JETP Lett. 2 (1965) 329.

[601 V.R. Nagibarov and U.Kh. Kopvillem, lzv. Vuzov. Fiz. 9 (1967) 66.

[61] F. Pacini,Riv. B. Cim. 2(1972)498.

[62] I-I. Pagels, Phys. Rev. B144 (1966) 1250, 1261, 1268.

[63] A. Papapetrou and E. Corinaldesi, Proc. Roy. Soc. A209 (1951) 248, 259.

[64] G. Papini and SR. Valluri, Can. J. Phys.53 (1975) 2306.
[65] G. Papini and SR. Valluri, Can. J. Phys. 53 (1975) 2312.

[66] G. Papini and SR. Valluri, Can. J. Phys. 53 (1975) 2315.

[67] G. Papini and SR. Valluri, Can. J. Phys. 54 (1976) 76.

[681 R.G. Parson, Phys. Rev. 168 (1968) 1562.

[691W.H. Press and KS. Thorne, Ann. Rev. Astron. Astroph. 10 (1972) 344.
[70] L. Rosenfeld, Ann. of Phys. 5 (1930) 113.

[71] L.I. Schiff, Quantum Mechanics (N.Y., 1949) p. 289.
[72] R.U. SexI, Phys. Lett. 20 (1966) 376.

[73] L. Spitzer Jr.; Physics of Fully Ionized Gases (Interscience Publishers, 1956) Chap. 5.
[741G. ‘t 1-looft and M. Veltman, Ann. Inst. Herni Poincaré 20A (1974) 69.

[75] S. Tsuruta and A.G.W. Cameron, Can. J. Phys. 44 (1966) 1863.

[76] W.G. Unruh, Phys. Rev. Di0 (1974) 3194.

[77] P. Van Nieuwenhuizen, M. Grossmann Meeting, ICTP, Trieste (1975).

[78] Y.N. Vandakurov, Ap. Lett. 5 (1970) 267.

[791Y.S. Vladimirov, Soy. Phys. JETP 18 (1964) 176.
[80] Y.S. Vladimirov, Soy. Phys. JETP 16 (1963) 65.

[81] J.C. Ward, Phys. Rev. 77,78 (1950) L293, L182.

[82] J. Weber, Relativity, Groups and Topology, eds. C. DeWitt and B.S. DeWitt (N.Y., 1964).

[83] J. Weber and H. 1-linds, Phys. Rev. 128 (1962) 2414.



G. Papini and S. R. Valluri, Gra vitons in Minkowski space—time. Interactions and resuIts of astrophysical interest 125

[84] J. Weber, General Relatively and Gravitational Waves (London, 1961).

[85] S. Weinberg, Phys. Rev. B133 (1964) 1318.

[861 S. Weinberg, Phys. Rev. B134 (1964) 882.

[871 S. Weinberg, Brandeis Lectures (1964) 409—48.

[881 S. Weinberg, Phys. Rev. B140 (1965) 516.

[89] J.A. Wheeler, Relativity Space Time and Geometrodynamics (Princeton, 1961).

[90] J.A. Wheeler and D. Brill, Rev. Mod. Phys. 29 (1957) 465.
[91] J.A. Wheeler and D. Brill, Rendiconti Scuola, Varenna, Corso No. 12 (1960).

[92] DR. Yennie, H. Suura and S.C. Frautschi, Ann. of Phys. 13(1961)379.

[93] F.J. Zerilli, Phys. Rev. D2 (1970) 2141.

[94] R.H. Dicke, Phys. Rev. 93 (1954) 99.


