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Some applications of the Lambert W
function to physics

S.R. Valluri, D.J. Jeffrey, and R.M. Corless

Abstract: Two standard physics problems are solved in terms of the LambertW function,
to show the applicability of this recently defined function to physics. Other applications of
the function are cited, but not described. The problems solved concern Wien’s displacement
law and the fringing fields of a capacitor, the latter problem being representative of some
problems solved using conformal transformations. The physical content of the solutions remains
unchanged, but they gain a new elegance and convenience.

PACS No.: 41.10F

Résumé: Nous solutionnons deux problèmes types de physique en utilisant la fonctionW de
Lambert afin de mettre en évidence l’utilisation en physique de cette fonction nouvellement
définie. Nous mentionnons sans élaborer d’autres applications possibles de la fonction. Les
problèmes solutionnés touchent la loi de déplacement de Wien et le champ de bord d’un
condensateur, ce dernier étant représentatif de certains problèmes habituellement solutionnés
par transformation conforme. Le contenu physique des solutions ne change pas mais elles
acquièrent une nouvelle élégance.

[Traduit par la rédaction]

1. Introduction

Many physicists have experienced, during their education, the surprise of seeing a known mathe-
matical function appear in a new physical context. An example in elementary physics is one that arises
when students are first taught about simple harmonic motion. We hope that some readers can remember
their amazement on learning that the motion of objects bobbing on springs, or moving in circles, can be
described using trigonometric functions. At the time, they might have wondered, “The functions sine
and cosine are used for all of those triangle problems in geometry class; there are no triangles here. A
recent example of the same phenomenon is the discovery that a function called the LambertW function
has applications in a number of areas of physics, even though it was first defined by a computer scientist
for the purpose of counting search trees. Several well-known problems in electrostatics and in quantum
mechanics can be solved with greater facility using it. In addition to presenting these problems, we give
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references to other, less elementary, applications.

Mathematical functions do not by themselves uncover new physics — rather they assist the physicist
by facilitating numerical and algebraic computations. A physicist, therefore, demands several things of
any new function before taking the time to learn about it. The first feature it should have is that it is
likely to have some general applicability. Abramowitz and Stegun [1] is full of functions that most of us
would prefer not to know anything about; we only want to know about functions that will probably prove
useful. Each person will draw the line between useful and not useful at a different place. The second
feature is that there should be convenient access to numerical evaluation and to pertinent algebraic
properties. A function that cannot be worked with easily is not much use. Many readers will be familiar
with the conference scene in which a colleague asks you whether you know of a computer program to
calculate values of theChepookafunction.1 You probably reply that you yourself need a reference on
the asymptotic properties of theHorrorshowfunction, at which point the two of you change the topic of
conversation. Until the advent of the scientific calculator, even trigonometric functions and logarithms
were not so easy to evaluate.

The LambertW function is a function that meets the criteria just listed. It first received a name
in the early 1980s, when the program MAPLE defined a function that was named simplyW . An
historical search, conducted while writing an account of this function [2], found work by the eighteenth
century scientist Lambert that foreshadowed the definition of the function; even though his work did
not actually define the function,W was named in his honour. The same search uncovered a fortuitous
reason for calling the functionW , in that Wright, a mathematician known for his book with Hardy on
pure mathematics, studied the complex values of the function, again without naming it. The function is
not connected with the Lambert transform of a function, which has been defined independently [3].

The definition ofW is that it is the function that solves the equation

W eW = z (1)

wherez is a complex number. This equation always has an infinite number of solutions, most of them
complex, and soW is a multivalued function. The different possible solutions are labelled by an integer
variable called the branch ofW . Thus, the proper way to talk about the solutions of (1) is to say that
they areWk(z), for anyk = 0, ±1, ±2, etc. There is always special interest in solutions that are purely
real, and so we note immediately that whenz is a real number, (1) can have either two real solutions,
in which case they areW0(z) andW−1(z), or it can have only one real solution, this beingW0(z) (with
W−1(z) now being complex), or no real solution. Even ifz is real, the branches other thank = 0, −1
are always complex. Admittedly,W does not yet appear on any pocket calculator, but it is known to the
computing systems MAPLE, MACSYMA, and MATHEMATICA (in the case of MATHEMATICA,
the function is calledProductLog). Therefore, as soon as a problem is solved in terms ofW , numerical
values, plots, derivatives, and integrals can be easily obtained.

The first physics problem to be solved explicitly in terms ofW was one in which the exchange
forces between two nuclei within the hydrogen molecular ion (H+

2 ) were calculated [4]; this, however,
is a long and difficult calculation (and it has already been published) so instead of describing it, we have
taken two much simpler problems from standard physics textbooks, problems that many students meet
in their physics education, and we have expressed the solutions in terms ofW . As mentioned above, the
physical content does not change, only the ease of working. An additional point of interest is the fact
that the electrostatic application helps to justify a mathematical decision concerning the definition of
W that was originally taken entirely on aesthetic (in a mathematical sense) grounds.

1 The names of these fictitious functions are inspired by the novelA clockwork orange.
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2. Wien’s displacement law

The spectral distribution of black-body radiation is a function of the wavelengthλ and absolute
temperatureT , and is described byρ(λ, T ), defined such thatρ(λ, T ) dλ is the power emitted in a
wavelength interval dλ per unit area from a black body at absolute temperatureT . The wavelengthλmax
at whichρ is a maximum obeys Wien’s displacement lawλmaxT = b, whereb is Wien’s displacement
constant [5]. This law was proposed by Wien in 1893 from general thermodynamic arguments. Once
Planck’s spectral distribution law is known, Wien’s law can be deduced and the value ofb determined.

The Planck spectral distribution law is

ρ(λ, T ) = 8πhc/λ5

exp(hc/λkT ) − 1

The value ofλ for which this function is a maximum can be obtained by solving∂ρ/∂λ = 0. After
simplification, this leads to the equation

−5 exp

(
hc

λkT

)
+ 5 + exp

(
hc

λkT

)
hc

λkT
= 0

which, on the substitutionx = hc/λkT , can be written concisely as the transcendental equation

(x − 5) ex = −5 (2)

This equation has the trivial solutionx = 0 and the nontrivial one

x = 5 + W0(−5 e−5)

Therefore Wien’s law is obtained with a new expression for Wien’s displacement constant:

b = hc/k

5 + W0(−5 e−5)
= 2.893× 10−3 mK (3)

In the past, one would have obtained the numerical value of the law by programming a Newton–
Raphson or similar solver on (2); now one can start up a computer package and obtain the value without
programming. Time is saved not only because no programming is needed, but also because the system
developers have implemented the fastest and most accurate method of evaluation.

3. Capacitor fields and conformal mapping

The equipotential lines that are to be calculated are shown in Fig. 1 in the top set of axes. We see there
the fringing field at the edge of a two-dimensional parallel-plate capacitor. The plates are assumed to be
semi-infinite, and at potentials±V . The coordinates of any point in the plane are expressed as a complex
number:ζ = ξ + iη. The plane is, therefore, called theζ -plane, and what is required is a function8(ζ)

giving the electric potential at any point. This function is usually obtained using conformal-mapping
techniques [6]. In general, conformal techniques solve a problem by relating its geometry to a simpler
geometry in which the governing equations are easily solved. In the present case, the simpler geometry
is shown at the bottom of Fig. 1 and consists of two parallel infinite planes. What we are given is
a transformationζ = f (z) and a solutionφ(z), valid in thez-plane. To stay with generalities for a
moment, before giving the specific details of this problem, we notice that the transformation has been
written ζ = f (z). This means that the solution is obtained as a pair of equations:

8(ζ) = φ(z), ζ = f (z)
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Fig. 1. The top set of axes (theζ -plane) show the edge of a parallel-plate capacitor. The plates are the heavy lines.
The equipotential lines of the fringing field are shown and are calculated as images of horizontal grid lines in the
z-plane. The bottom set of axes show thez-plane, which is mapped to theζ -plane byζ = 1 + z + ez.
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To obtain the desired8(ζ) explicitly, one must invert the transformationf to eliminatez. This is usually
not easy to do.

We now give the details of the problem at hand. The conformal transformation that is used is [6]

ζ = 1 + z + ez (4)

This is a member of the Schwarz–Christoffel family of transformations [7]; alsoζ(z) obeys a differential
equation of the Bernoulli type. Thez-plane is shown in Fig. 1, filled with horizontal lines. Each line
has the (complex) equationz = x + iK, wherex varies andK is the constant describing the line.
The plates are given byK = ±π . The effect of the transformation is to map the straight lines in the
bottom set of axes to the curves in the top set of axes. Ifz = x + iy, the potential in thez-plane is
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Fig. 2. The top and bottom sets of axes again show theζ - andz-planes. Now the transformation proceeds from
top to bottom using the inverse mappingz = ζ − 1 − WK(ζ )(eζ−1).
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φ = Vy/π = V =z/π , where=z means imaginary part ofz. Therefore, given a pointz between the
infinite plates, we can find the correspondingζ coordinate and then know the potential there.

As foreshadowed, the unsatisfactory part of the solution is the fact that we do not get the solution
as a function ofζ . Given a pointζ , we must solve (4) to findz. In general, conformal transformations
do not have simple inverses, and the computations must be programmed as a root-finding exercise.

In the past, the problem at hand was one more example of this, but now the definition and imple-
mentation of LambertW have made it possible to invert (4) explicitly. During the solution, an arbitrary
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Fig. 3. The real values of the LambertW function. The continuous line showsW0 and the broken lineW−1.
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integerk is introduced to indicate the existence of multiple solutions. We proceed:

ζ − 1 = z + ez

eζ−1 = ez eez

ez = Wk(e
ζ−1)

ζ − 1 − z = Wk(e
ζ−1)

z = ζ − 1 − Wk(e
ζ−1)

(5)

Some further analysis (not given here) shows that the restriction−π < =z < π implies that the branch
indexk is also specified, onceζ is known; moreover, we can give an analytic formula for this, in terms
of K, theunwinding number[8,9]. The expression is

k = K (ζ ) =
⌈=ζ − π

2π

⌉
(6)

Here the symbold e denotes the ceiling function, which is the integer obtained by roundingup (as
opposed to floor which is obtained by rounding down).

Figure 2 shows how the inverse transformation works. Recalling the notation,ζ = ξ + iη, we divide
the ζ -plane into strips of width 2π . The main strip between the plates, and extending to the right, is
−π < η < π and is shown containing continuous lines. The strips−3π < η < −π andπ < η < 3π

are shown containing broken lines. Each strip is transformed using a different branch ofW , the one
with indexk = K(ζ ), onto a distinct portion of the strip−π < =z < π . The portions of the strip thus
mapped are symmetric, in the sense thatW−k andWk map into regions symmetric about the realz-axis.

In summary, we have derived the following new analytical formula for the solution for the fringing
fields of a semi-infinite capacitor. The potential at the pointζ is

8 =
(

V

π

)
=

[
ζ − 1 − WK(ζ )

(
eζ−1

)]
(7)
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Table 1. Some exact and approximate values for the LambertW function. Of
the infinite number of branchesWk, we tabulate three branches. The entries
“complex infinity” mean that the values ofW−1(0) andW1(0) have infinite
real part, but their imaginary parts depend upon the direction in which 0 is
approached.

x W0(x) W−1(x) W1(x)

e 1 −0.5321− 4.597i −0.5321+ 4.597i

1 0.5671 −1.534− 4.375i −1.534+ 4.375i

0 0 complex infinity complex infinity
−1/e −1 −1 −3.089+ 7.462i

−1/4 −0.3574 −2.153 −3.490+ 7.414i

−1/4 + i 0.3169+ 0.6807i −0.9667− 2.532i −1.843+ 6.241i

−1/4 − i 0.3169− 0.6807i −1.843− 6.241i −0.9667+ 2.532i

As stated in the introduction, for this formula to be actually useful, it must be easily evaluated.
Although the number of computer packages that containW built-in is still small, the packages are
among the most popular ones at the moment. Therefore, this formula is genuinely computational.

This application to conformal mappings adds an interesting postscript to the history of the definition
of W . The equation (1) does not by itself completely define the branches ofW [2,10], as explained in
the next section. The definition finally chosen in ref. 2 and implemented in the various mathematical
packages was chosen purely to obtain simple asymptotic expansions forW(z) for largez. The present
physics application confirms the utility of the choice made, because any other choice would force a more
complicated expression to be used in place of (7). Once again, as in the past, physics and mathematics
agree on the best definitions.

4. Further properties of W

Rather than continue with more descriptions of problems (more references are given below), we
assume in this section that the case for knowing something aboutW has been made, and amplify the
introductory description of its properties. An obvious starting point is a graph of its real values. The
two real branches are shown in Fig. 3, the principal branchW0(x) is the continuous line, and the branch
W−1(x) is the broken line. Some numerical values are also given in Table 1.

Most readers will not be surprised thatW can be differentiated:W ′ = e−W/(1 + W), but may be
surprised that functions containing it can be integrated.
∫

W(x) dx = (W2(x) − W(x) + 1) eW(x) + C (8)

∫
xW(x) dx = 1

8
(2W(x) − 1)(2W2(x) + 1) e2W(x) + C (9)

Many other algebraic properties have been found [2], but we quote only one more that might be
useful in physical applications: an asymptotic formula for large (complex)z.

Wk(z) ∼ ln z + 2πik − ln(ln z + 2πik) (10)

where lnz is the principal branch of the (complex) natural logarithm (i.e., the function implemented in
software packages that support complex functions).
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Any physicist usingW also benefits from lengthy studies of the quickest way to evaluate the function
accurately. The basic strategy is to use the asymptotic formula to obtain a starting estimate for an iterative
scheme similar to a Newton iteration. Most physicists would jump to a Newton scheme if asked to
evaluate the function without help, but the packages have optimized this strategy to ensure accuracy
(always getting the branch correct, for example) and speed.

The liberty in assigning the branches ofW that was referred to above can be illustrated using the
values ofW given in Table 1. The reader can notice that although1

4 +i and1
4 −i are complex conjugates,

it is not the case thatW1(
1
4 + i) andW1(

1
4 − i) are correspondingly complex conjugates. The branches

of W could be assigned so that this relation became true, and indeed, an early version of MAPLE did
assign branches that way. Such a definition, however, would not satisfy the simple asymptotic relation
(10). Our physics application has confirmed that the symmetries as displayed in the table are the best
ones to have.

5. Concluding remarks

We have discussed two standard problems of physics in which the LambertW function can be used.
They are not the only two problems in whichW arises. For example, Adler and Piran [11] usedW

in their work on effective action models for a system of heavy antiquark and light scalar quark; they
were working about the time when the function was named and before its properties had been set out,
and so they did not benefit from the convenience they would now have. In their model, as well as in
nonlinear quantum electrodynamics, the nonlinear dielectric constant has a logarithmic dependence
on the applied electric field, which meant thatW could be used to describe the electric displacement.
Mann and Ohta [12,13] have usedW to elucidate the physics involved in their study of Lagrangians for
two-dimensional gravity.

The LambertW function has a rich variety of applications ranging from physics and computer
science, to statistics and biology. Examples include the calculations of partitions in number theory,
water-wave heights in oceanography, enumeration of trees in combinatorics and distribution of cycles
in random mappings, the thrust specific consumption in aeronautics, enzyme kinetics, exchange forces
between two nuclei within the hydrogen molecular ionH+

2 , movement of water in soil, detailed study of
Newton’s apsidal precession theorem, relativistic theories of gravity, and statistical distributions. There
is a variety of other problems where this function is applicable and where it clarifies aspects of the
physics. Many more such uses are being identified in physics and also other fields of endeavour.
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