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Abstract

Cardiovascular complications account for significant morbidity and mortality in the diabetic population. Diabetic cardiomyopathy, a prominent

cardiovascular complication, has been recognized as a microvascular disease that may lead to heart failure. Pathogenesis of diabetic

cardiomyopathy involves vascular endothelial cell dysfunction, as well as myocyte necrosis. Clinical trials have identified hyperglycemia as the

key determinant in the development of chronic diabetic complications. Sustained hyperglycemia induces several biochemical changes including

increased non-enzymatic glycation, sorbitol–myoinositol-mediated changes, redox potential alterations, and protein kinase C (PKC) activation, all

of which have been implicated in diabetic cardiomyopathy. Other contributing metabolic abnormalities may include defective glucose transport,

increased myocyte fatty acid uptake, and dysmetabolism. These biochemical changes manifest as hemodynamic alterations and structural changes

that include capillary basement membrane (BM) thickening, interstitial fibrosis, and myocyte hypertrophy and necrosis. Diabetes-mediated

biochemical anomalies show cross-interaction and complex interplay culminating in the activation of several intracellular signaling molecules.

Studies in both animal and human diabetes have shown alteration of several factors including vasoactive molecules that may be instrumental in

mediating structural and functional deficits at both the early and the late stages of the disease. In this review, we will highlight some of the

important vascular changes leading to diabetic cardiomyopathy and discuss the emerging potential therapeutic interventions.
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1. Introduction

The epidemic proportion of people with diabetes is

alarming, and it has been estimated that by the year 2025,

300 million people will become affected by the disease (Sicree

et al., 2003). Among the vast array of secondary problems

associated with diabetes, cardiovascular complications signif-

icantly contribute to increasing rates of morbidity and mortality

(Garcia et al., 1974; Sicree et al., 2003). Nearly 80% of the

deaths associated with diabetes are due to cardiac complica-

tions (Consensus statement/American Diabetes Association,

1993; Hayat et al., 2004). Although previous studies have

focused on coronary artery disease (CAD) and autonomic

neuropathy as the primary cardiac complication, over the last

30 years, diabetic cardiomyopathy has been identified as a

significant entity (Bell, 1995).

In 1972, Rubler et al. identified 4 diabetic patients who had

heart failure without evidence of redundant cardiac abnormality

such as CAD, hypertension, or other cardiovascular complica-

tion. Epidemiological, clinical, and experimental studies have

subsequently identified diabetic cardiomyopathy as a distinct

entity characterized by diastolic impairment (Hamby et al.,

1974; Bell, 1995; Cosson & Kevorkian, 2003). Even more

intriguing is the identification of diabetic cardiomyopathy as a

microvascular complication (Factor et al., 1980a, 1980b; Fein

& Sonnenblick, 1994; Bell, 1995). Structural and functional

changes in cardiac vasculature include capillary basement

membrane (BM) thickening, microaneurysms, and reduction in

capillary density (Factor et al., 1980a, 1980b; Nunoda et al.,

1985; Sutherland et al., 1989; Yarom et al., 1992). Cardiac

microvessel endothelial cell lesions have been shown in

experimental diabetes (Popov et al., 1996; Okada et al.,

1998; Okruhlicova et al., 2005). Interestingly, most cardiovas-

cular risk factors that cause alteration of other vascular

endothelial cells also affect cardiac endothelium including the

myocardial capillary endothelium (Henderson, 2001; Brutsaert,

2003). These studies suggest an important role of cardiac

microvascular endothelial dysfunction in the initiation and

perpetuation of the disease: a notion paralleled by other

secondary complications such as retinopathy and nephropathy

(La Selva et al., 1993; Khan & Chakrabarti, 2003a, 2003b).

The majority of diabetic cardiovascular clinical trials have

been aimed at preventing CAD and autonomic neuropathy.

However, experimental animal models of chronic diabetic
complications have shown beneficial effects of targeting

specific macromolecules in preventing the molecular changes

generally associated with cardiomyopathy. Such modifications

have been directly linked to high glucose-induced changes

occurring in the microvascular endothelial cells (MVECs), as

well as cardiomyocytes. Interestingly, hyperglycemia has been

identified as a key determinant in the development and

progression of diabetic complications, including endothelial

cell dysfunction (Diabetes Control and Complications Trial,

1993; Feener & King, 2001; Kakizawa et al., 2004). Large

scale clinical trials such as the Diabetes Control and

Complications Trial and the United Kingdom Perspectives

Diabetes Study have provided substantial evidence supporting

the role of hyperglycemia-mediated changes in diabetic

complications (Diabetes Control and Complications Trial,

1993; United Kingdom prospective diabetic study, 1996).

Diabetic biochemical modulation occurs in the endothelial

cells, as well as myocytes, both of which may contribute to

cell death. Long-term exposure to hyperglycemia induces

many biochemical modifications, such as non-enzymatic

glycation, sorbitol–myoinositol-mediated changes, redox po-

tential alterations, protein kinase C (PKC) activation, and free

fatty acid (FFA) metabolism in myocytes (Brownlee, 2001;

Sheetz & King, 2002; Carvajal & Moreno-Sanchez, 2003;

Khan & Chakrabarti, 2003a). It is plausible that most if not

all of the biochemical abnormalities are implemented in

diabetic cardiomyopathy. In addition to hyperglycemia, type 2

diabetic patients encounter the complications associated with

hyperinsulinemia and dyslipidemia. These may include

elaboration of vasoactive factors, defective glucose transport,

increased myocyte fatty acid uptake, and altered calcium

uptake (Bell, 1995; Hopfner et al., 1998; Carvajal & Moreno-

Sanchez, 2003; Cosson & Kevorkian, 2003). The concert of

these pathogenetic changes results in a particular sequence of

events that include hemodynamic alterations and structural

changes such as BM thickening, extracellular matrix (ECM)

protein deposition, fibrosis, myocyte hypertrophy, and necro-

sis (Savage et al., 1988; Bell, 1995; Shehadeh & Regan,

1995; Lewinter, 1996; Khan & Chakrabarti, 2003a). This

review will highlight the role of vascular endothelium in

mediating hyperglycemia-induced structural and functional

modifications, as well as the biochemical alterations, and the

possible therapeutic interventions aimed at treating diabetic

cardiomyopathy.
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2. Functional and structural changes

2.1. Functional changes: hemodynamic alterations

Vascular endothelial cells, which utilize non-insulin-medi-

ated mechanisms for glucose transport, are the primary targets

of glucose-induced damage (Fig. 1). The early changes

associated with endothelial dysfunction include hemodynamic

modifications such as increased permeability and decreased

blood flow (Brownlee, 2001; Sheetz & King, 2002; Khan &

Chakrabarti, 2003a). These changes are associated with altered

vasoactive factors, such as increased endothelin-1 (ET-1)

expression and decreased nitric oxide (NO) bioavailability,

leading to increased vasoconstriction and impaired vasodilata-

tion (Khan & Chakrabarti, 2003a) (Fig. 1). We have previously

shown that micro- and macrovascular endothelial cells exposed

to high glucose levels increase the production of ET-1 (Chen et

al., 2003b; Khan et al., 2004). Such elaboration of ET-1 is

characterized as a key functional alteration in endothelial

dysfunction (Sheetz & King, 2002; Khan & Chakrabarti,

2003a; Khan et al., 2004) (Fig. 2). We have further shown up-
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regulation of ET-1 in the target organs of diabetic complica-

tions: heart, retina, and kidney (Chen et al., 2000, 2003a; Khan

et al., 2004). In normal adult heart tissue, ET has been shown to

be predominantly expressed in cardiac endothelial cells

(Mebazaa et al., 1993) as compared to the cardiomyocytes

(Nishimura et al., 1994), further suggesting an important role of

cardiac endothelial cells in diabetic cardiomyopathy. Research

has also identified ET-1 up-regulation in the serum of diabetic

patients (Collier et al., 1992; Haak et al., 1992; Donatelli et al.,

1994; Ak et al., 2001) and vitreous of patients with

proliferative diabetic retinopathy (Khan et al., 2004).

Hemodynamic studies have indicated that endothelium-

dependent vasodilatory response in diabetes is impaired

(McVeigh et al., 1992; Lambert et al., 1996; Dogra et al.,

2001; Van de Ree et al., 2001; Johnstone et al., 1993). The

exact mechanism of these changes has not been elucidated, as

researchers have shown contradictory results regarding altered

NO production and the expression of nitric oxide synthase

(NOS). We have shown that following 1 month of diabetes

endothelial NOS (eNOS) and inducible NOS (iNOS) mRNA

levels are up-regulated without changes to nitrate and nitrite
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Fig. 3. Interaction between endothelin-1 (ET-1) and nitric oxide (NO) in
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sion of ET and activation of protein kinase C (PKC) may regulate NO synthase

(NOS) at both the transcriptional and the post-translational level. NOS-derived

NO is sequestered by oxidative stress reducing NO availability and impairing

vasodilatation and coronary flow reserve in diabetic cardiomyopathy.
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Fig. 2. Proposed mechanisms of endothelin (ET) alteration and functional consequences in cardiac endothelial cells and myocytes. High glucose-induced oxidative

stress and other biochemical anomalies such as protein kinase C (PKC) activation, aldose reductase (AR) induction, and interaction of advanced glycation end-

product (AGE) with their receptor (RAGE) can increase ET expression by endothelial cells. Altered ET levels may then lead to both hemodynamic (vasoconstriction/

blood flow and permeability) and structural (extracellular matrix [ECM] deposition, myocyte hypertrophy) changes in the heart (NO, nitric oxide; NF-nB, nuclear
factor-nB).
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levels in the diabetic rat heart (Farhangkhoee et al., 2003).

Increased iNOS immunoreactivity has also been demonstrated

in other microvascular targets of chronic diabetes such as the

retina (Abu El-Asrar et al., 2004). In addition, we have shown

that cultured endothelial cells in high glucose up-regulate both

eNOS and iNOS (Chen et al., 2004). These results suggest that

NOS expression may be augmented in hyperglycemic condi-

tions. Whether NO production is also increased remains to be

determined with the development of more accurate techniques.

In addition, the amount of NO available may be subjected to

alteration by rapid sequestration. Other studies have confirmed

reduced NO availability in the progression of diabetic

cardiomyopathy (Joffe et al., 1999). Reports also indicate an

inverse relationship between nitrite/nitrate levels and perox-

ynitrite levels in diabetic patients (Hoeldtke et al., 2003).

Furthermore, l-arginine administration can prevent high

glucose-induced Q-T interval changes in isolated rat hearts

(D’Amico et al., 2001). Together, these findings suggest that

NO availability and NO conversion to peroxynitrite may be

physiologically significant in diabetes (Fig. 3).

The activity of all NOS enzymes, particularly eNOS, is

subjected to post-transcriptional regulation by other proteins

and cofactors, which may also alter the production of NO

(Fleming & Busse, 1999, 2003). NOS has the capability to

produce superoxide anions (O2
�) in the absence of tetrahy-

drobiopterin (BH4) or l-arginine and thus increase oxidative

stress (Pou et al., 1992; Cosentino & Katusic, 1995; Pou et al.,

1999). The potential of all NOS isoforms to generate O2
� in the

pathogenesis of diabetic complications is still under investiga-
tion; however, research has implicated this mechanism in the

diabetic patients with CAD and in the kidneys of diabetic rats

(Guzik et al., 2002; Satoh et al., 2005). Targeting vasoactive

factors as a therapeutic modality has shown beneficial effects in

the prevention of diabetic microvascular disease, including
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cardiomyopathy. We have also demonstrated reduced diabetes-

induced vasoconstriction in the retina following treatment with

NO donor, molsidomine (Cukiernik et al., 2003). Whether

targeting vasoactive factors provides an effective treatment

strategy remains to be elucidated in humans with diabetes.

2.2. Structural changes:

extracellular matrix protein synthesis and fibrosis

Sustained damage to endothelial cells by hyperglycemia

ultimately leads to cell loss, reduced blood flow, hypoxia, and

tissue ischemia (Di Mario & Pugliese, 2001; Khan &

Chakrabarti, 2003b). The compensatory response to these

changes may the be activation of endothelial cells and

accompanying elaboration of growth factors such as vascular

endothelial growth factor (VEGF) and transforming growth

factor-h (Khan & Chakrabarti, 2003a, 2003b). The former

influences the angiogenic response and endothelial prolifera-

tion, while the latter plays an important role in regulating the

composition of the ECM. We have identified the key role of

high glucose-induced transforming growth factor-h and ET-1

in the production of oncofetal fibronectin, a possible angio-

genic ECM protein (Khan et al., 2004, 2005). In the rat heart,

we have also shown that after 6 months of streptozotocin-

induced diabetes, cardiac tissues exhibited increased fibronec-

tin and collagen a1 (IV) expression (Chen et al., 2000).

Interestingly, the changes were prevented by an ET-1 receptor

antagonist bosentan (Chen et al., 2000; Khan et al., 2004,

2005). Diabetes-induced and ET-mediated increased collagen

deposition may contribute to both capillary BM thickening and

myocardial fibrosis. Examination of left ventricular biopsy

specimens has shown increased interstitial fibrosis (Anguera et

al., 1998). Furthermore, increased thickening of the BMs of

heart microvessels has been demonstrated in animal models of

diabetes (Saito et al., 2003). These studies suggest that

diabetes-induced vasoactive/growth factors may contribute to

ECM deposition and thus lead to the development of diabetic

cardiomyopathy.

In response to tissue ischemia, which is precipitated by

fibrosis and reduced compliance, the target organs of diabetic

complications increase VEGF mRNA and protein levels (Khan

& Chakrabarti, 2003b). This compensatory increase in VEGF,

occurring predominantly in highly vascularized tissues such as

the retina, has not been clearly established in diabetic

cardiomyopathy. The expression of VEGF and its receptors

has been shown to be down-regulated in the heart tissues of

diabetic animals and human subjects with diabetes (Chou et al.,

2002). These changes in the heart suggest that the angiogenic

response is compromised, which in turn further exacerbates the

hypoxic conditions and leads to severe damage to the cardiac

tissues. The possibility of promoting angiogenesis in the heart

may be an important therapeutic intervention, as increase in

blood flow and reduced vasoconstriction may prevent tissue

ischemia and myocyte necrosis. To improve the angiogenic

response during cardiovascular complications, several clinical

trials have implicated VEGF gene therapy as a promising

therapeutic avenue (Losordo et al., 1998; Rosengart et al.,
1999; Losordo et al., 2002; Fortuin et al., 2003; Hedman et al.,

2003; Kolsut et al., 2003). These studies have indicated that the

administration of gene encoding VEGF can ameliorate

cardiovascular complications such as myocardial ischemia

and infarction and CAD. For instance, VEGF gene therapy

has been shown to improve myocardial perfusion in some

patients with myocardial infarction (Losordo et al., 1998).

However, it should be noted that the potent vascular

permeability activity of VEGF has shown undesirable out-

comes. A recent report indicated lower extremity edema in

patients with VEGF165 administration (Baumgartner et al.,

2000). Although clinical trials targeting diabetic cardiomyop-

athy have not yet been conducted, animal studies have shown

the benefit of VEGF gene therapy in diabetic cardiomyopathy

(Yoon et al., 2005). In addition, other clinical trials aimed at

diabetic neuropathy are underway and offer important thera-

peutic avenues (Isner et al., 2001).

The hypoxia-induced modifications to the microenviron-

ment of the heart lead to interstitial and/or perivascular fibrosis

and myocyte necrosis, which is evident in animal models of

diabetes, as well as human patients who have developed

secondary complications (Factor et al., 1980a, 1980b, 1981;

Kawaguchi et al., 1997). The detrimental effect of cardiac

fibrosis and myocyte death primarily manifest as left ventric-

ular hypertrophy and diastolic impairment. In the majority of

cases, diastolic dysfunction is subclinical, and the presentation

of heart complications is not evident, as assessed by Doppler

echocardiography measurements, until the disease progresses

to an advanced stage (Ommen & Nishimura, 2003; Hayat et al.,

2004; Zile et al., 2004). At a more pronounced stage, diastolic

dysfunction includes impaired relaxation and increased sus-

ceptibility to myocardial ischemia (Kouvaras et al., 1988;

Lomuscio et al., 1991; Bell, 1995; Das et al., 2004). The

pathogenesis of diastolic dysfunction is directly related to ECM

deposition. Our studies have indicated that increased fibronec-

tin and collagen a1 (IV) are associated with focal scaring and

myocyte death (Chen et al., 2000). Moreover, advanced

glycation end-product (AGE)-induced collagen cross-linking

has also been documented to induce diastolic dysfunctions

(Norton et al., 1996; Aronson, 2003;). In addition to the

deficiencies affecting relaxation properties, systolic dysfunc-

tion is also an important feature of diabetic cardiomyopathy

(Punzengruber & Schernthaner, 1986; Yasuda et al., 1992;

Mbanya et al., 2001). Contractile changes are thought to occur

at a later stage in the disease process in comparison to diastolic

dysfunction (Cosson & Kevorkian, 2003). These functional

alterations in the heart may be directly attributable to vascular

cell dysfunction, tissue fibrosis, and myocyte death. Therapeu-

tic interventions therefore should be aimed at correcting blood

flow reduction and increased matrix protein deposition. These

targets may include vasoactive factor ET and fibrogenic growth

factor transforming growth factor-h. Importance of early

vasoactive factor alteration in cardiac hypertrophy and failure

is evident in hypertensive animal models. ET is elevated in

deoxycorticosterone acetate-induced hypertensive rat with

cardiac hypertrophy (Lariviere et al., 1995). Right and left

ventricular ET-1 levels have also been shown to be similar to
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normal counterparts during the hypertrophic phase in hyper-

tensive rat model (Iwanaga et al., 1998). However, an increase

in myocardial ET-1 was observed during the transition from left

ventricular hypertrophy to congestive heart failure. These

studies suggest an important role of cardiac endothelial-derived

ET-1 in cardiac tissue remodeling.

3. Hyperglycemic-induced biochemical alterations

3.1. Advanced glycation

end-products and non-enzymatic glycation

The production of AGEs, a physiological process, has been

implicated in the development of diabetic complications

including cardiomyopathy (Candido et al., 2003). Glucose

and other reducing sugars have the ability to react with

proteins, lipids, and DNA in a process known as the Maillard

reaction (John & Lamb, 1993; Raj et al., 2000). This non-

enzymatic reaction yields Schiff’s base (early glycation

product), Amadori products (intermediate glycation products),

and AGEs. During the Maillard reaction, the reactive interme-

diate products, methylglyoxal, 3-deoxyglucosone, and glyoxal

are also produced and may participate in the development of

carbonyl stress and AGE formation (Skovsted et al., 1998;

Baynes & Thorpe, 1999; Miyata et al., 2000). Increased AGE

formation has been reported in heart tissues of diabetic animals

(Candido et al., 2003).

AGEs induce detrimental effects in both an intra- and

extracellular manner. Within the cells, AGEs and their

precursors modify macromolecules and nucleic acids. In the

extracellular environment, AGE modification of proteins can

irreversibly produce cross-links between important ECM

proteins such as collagen and elastin (Brownlee et al.,

1988; Airaksinen et al., 1993; Candido et al., 2003). These

modifications result in impaired function of the organs, as a

result of the inability tissue to be compliant and flexible

(Dyer et al., 1993; McCance et al., 1993). Myocardial

stiffness may result from the sum of increased deposition of

collagen and cross-link formation (Norton et al., 1996;

Aronson, 2003; Candido et al., 2003). These studies have

also suggested that augmented production of cross-linked

ECM proteins can lead to diastolic impairment (Aronson,

2003; Norton et al., 1996). AGEs may also produce adverse

effects by binding to their receptors (RAGEs), which are

found in several cell types, including endothelial cells,

smooth muscle cells, and macrophages (Thornalley, 1998).

The interaction has been reported to induce the production of

cytokines and growth factors in microvascular diabetic

complications (Pugliese et al., 1997; Cooper, 2004). Increased

expression of RAGE has been shown in the heart tissues of

diabetic rats (Candido et al., 2003). Such increased expression

of RAGE was associated with connective tissue growth factor

up-regulation and collagen deposition. Treatment of diabetic

rats with alagebrium chloride (AGE cross-link inhibitor; ALT-

711) prevented ventricular RAGE and connective tissue

growth factor up-regulation. Overexpression of RAGE in

the heart has also been reported to cause changes in
myocardial Ca+ handling (Petrova et al., 2002). Furthermore,

administration of AGEs in RAGE-transgenic mice prolonged

the cardiomyocyte intracellular Ca+ decay to a greater extent

than myocytes from control animals, suggesting a role of

AGE/RAGE interaction in cardiomyocyte dysfunction.

Potential therapeutic targets preventing the detrimental

effects of AGEs include inhibitors of AGE formation and

AGE cross-link breakers. Aminoguanidine, an inhibitor of

AGE formation, has been shown to prevent diabetes-induced

arterial wall protein cross-linking in rats (Brownlee et al.,

1986). Furthermore, ALT-711 treatment of streptozotocin-

induced diabetic rats causes a significant reduction in brain

natriuretic peptide, left ventricular hypertrophy, and type III

collagen deposition (Candido et al., 2003). Other studies have

shown similar effects of ALT-711 in diabetic dogs (Liu et al.,

2003). Clinical trials elucidating the implications of AGE or

cross-link inhibitors on diabetic cardiomyopathy remain to be

elucidated. Studies aimed at treating older individuals who

have arterial stiffness with ALT-711 have shown reduced

arterial compliance and thus provide a possible therapeutic

intervention (Kass et al., 2001).

3.2. Aldose reductase pathway

Under physiological conditions, the majority of glucose is

metabolized through the glycolytic pathway; however, during

hyperglycemic conditions, the percentage of glucose oxidation

through the aldose reductase (AR) pathway is increased. Such

metabolic pathway switch is clearly evident in the ocular lens

where the percentage of glucose metabolized by the AR

pathway can increase from 3% to 30% (Gonzalez et al., 1984).

Augmented glucose metabolism through the AR pathway may

lead to several secondary biochemical changes in the heart

(Roy et al., 1990; Brownlee, 2001; Galvez et al., 2003). The

first enzymatic reaction in the AR pathway, which converts

glucose to sorbitol, requires reduced nicotinamide adenine

dinucleotide phosphate (NADPH) as a cofactor. Therefore,

increased AR activity yields a decrease in the NADPH/NADP+

ratio. This altered redox potential results in depletion of

cofactors required for antioxidant enzymes such as glutathione

reductase, increasing oxidant injury (Srivastava et al., 1989).

The second reaction is the oxidation of sorbitol to fructose by

sorbitol dehydrogenase. Similar to the AR enzyme, sorbitol

dehydrogenase requires a cofactor, nicotinamide adenine

dinucleotide (NAD+), which leads to the production of reduced

nicotinamide adenine dinucleotide (NADH) and ultimately

increases the NADH/NAD+ ratio. This altered redox state

resembles hypoxia and is often referred to as pseudohypoxia

(Williamson et al., 1993).

Besides altered redox potential changes, the AR pathway

induces several other interrelated biochemical modifications.

One of these changes is the accumulation of sorbitol, which

occurs as a result of slower enzyme kinetics of sorbitol

dehydrogenase and the membrane impermeable nature of

sorbitol (Burg, 1995; Hotta, 1997). These alterations subse-

quently induce osmotic stress and changes to membrane

myoinositol composition, which lead to myoinositol-related
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(Na+/K+)-ATPase defect (Greene et al., 1987). We have

previously shown that supplementation with myoinositol

contribute, in part, to preventing thickening of the BM in

diabetic rats (Chakrabarti & Sima, 1992).

Polymorphism in AR gene has been linked to increased

susceptibility of microvascular complications in diabetes

(Demaine, 2003; Wang et al., 2003; Sivenius et al., 2004),

implicating AR inhibition as a therapeutic modality. Several

AR inhibitors including sorbinil, statil, tolrestat, and zopolre-

stat have been evaluated for the prevention of diabetic

complications (Kador et al., 1985; Dvornik, 1992; Tsai &

Burnakis, 1993; Pfeifer et al., 1997; Srivastava et al., 2005).

In spite of the fact that no direct role of AR inhibition in

diabetic cardiomyopathy has been established, the notion of

AR inhibition in preventing diabetic cardiomyopathy is

interesting. Studies have shown that administration of the

AR inhibitor zopolrestat to diabetic nephropathy patients can

increase their resting left ventricular ejection fraction, cardiac

output, and left ventricular stroke volume (Johnson et al.,

2004). Other researchers have shown that AR inhibition in

patients with diabetic autonomic neuropathy showed

improvements in cardiovascular performance such as en-

hanced resting cardiac output and maximal cardiac output

(Roy et al., 1990). In animal models of diabetic complica-

tions, AR inhibition in the heart causes reduction in sorbitol

accumulation, normalization of NADH/NAD+ ratio, ATP

preservation, and reduction in ischemic injury (Ramasamy et

al., 1997; Trueblood & Ramasamy, 1998). Taken together,

these studies suggest that AR inhibition may provide some

beneficial effects in the prevention of diabetic cardiomyop-

athy; however, further studies are required to establish this

therapeutic intervention.

3.3. Protein kinase C activation

Glucose-induced activation of PKC, via predominately a de

novo synthesis of diacylglycerol, has been documented in both

experimental animal models and human subjects with long-

standing diabetes (Giles et al., 1998; Liu et al., 1999; Way et

al., 2001; Way et al., 2002; Guo et al., 2003). PKC activation

may lead to several important biochemical changes that have

been documented in diabetic cardiomyopathy. These changes

include reduced blood flow and increased vascular permeabil-

ity, BM thickening, and ECM deposition (Ishii et al., 1996;

Koya & King, 1998; Way et al., 2001; Hayat et al., 2004). In

other target organs, PKC up-regulation has been shown to play

a role in growth factor expression, activation of mitogen-

activated protein kinase (MAPK), and nuclear transcription

factors (Tomlinson, 1999).

There are at least 12 isoforms of PKC which exert their

effects in a tissue- and isoform-dependent manner (Mellor &

Parker, 1998). In the heart, diabetes-mediated PKC-h activa-

tion exhibits the greatest induction and is suggested to be the

ideal candidate for therapeutic modalities (Inoguchi et al.,

1992; Liu et al., 1999; Guo et al., 2003). Recent studies have

implicated PKC-a, -h, and -( in the development of diabetic

cardiac hypertrophy (Way et al., 2001). These findings suggest
that PKC isoform activation may depend on the stage of the

disease and the pathogenetic alteration.

Over the last few years, researchers have focused much

attention on the PKC-h inhibitor, ruboxistaurin mesylate

(LY333531) (Way et al., 2001). Interestingly, this specific

inhibitor has been reported to reverse cardiac hypertrophy,

improved fractional shortening, and cardiac injury in a

transgenic mouse model with overexpression of PKC-h in

the heart (Wakasaki et al., 1997). Selective inhibition of

PKC-h has also been reported to correct increased albumin

flux through coronary venules at the early onset of

streptozotocin-induced diabetes in pigs (Yuan et al., 2000).

Phase I clinical trials testing the toxicity and risks associated

with PKC-h inhibition have shown no detrimental effects of

ruboxistaurin mesylate (Shen, 2003; Wheeler, 2003). Al-

though the clinical trails do not indicate the improvements

specifically to diabetic cardiomyopathy, this inhibition is

associated with improvements in diabetic retinopathy, ne-

phropathy, neuropathy, and cardiac dysfunction (Way et al.,

2001). Phase III clinical trials are in progress and hold some

promise in terms of preventing cardiomyopathy (Shen, 2003).

Recently, cardiac-specific activation of PKC-( has been

shown to prevent diabetes-induced pathogenetic changes in

the heart including ventricular function and oxidative stress

(Malhotra et al., 2005). Further studies investigating the

differential role of various PKC isoforms may unveil which

isoforms should be targeted for inhibition and which can be

targeted for activation to transduce survival signals in the

diabetic heart.

3.4. Oxidative stress and redox potential

The augmentation of oxidative stress has been clearly

documented in the pathogenesis of diabetic complications,

including cardiomyopathy (Baynes & Thorpe, 1999; Cai &

Kang, 2001; Farhangkhoee et al., 2003). During long-standing

diabetes, the physiological response to combat oxidative stress

is overwhelmed, resulting in an imbalance between pro-

oxidative and anti-oxidative compounds. The mechanism of

hyperglycemia-induced oxidant injury includes glucose auto-

oxidation and a number of indirect pathways (King & Loeken,

2004) (Fig. 4).

One pathway that contributes to increased oxidative stress

involves the interaction of AGEs with their receptors (Wautier

et al., 2001; Vlassara, 2001). The association causes intracel-

lular changes, most notably the activation of redox transcrip-

tion factor, nuclear factor-nB (NF-nB) (Brownlee, 2001).

Another mechanism that contributes to glucose-induced oxi-

dative stress is the augmented flux of substrates though the AR

pathway. AR-mediated alteration of NADPH/NADP+ and

NADH/NAD+ ratio may result in depletion of cofactors

required for antioxidant enzymes and contribute to the

production of AGE precursors and the PKC activator diacyl-

glycerol (Srivastava et al., 1989; Brownlee, 2001). Activation

of PKC then causes oxidative stress via activating mitochon-

drial NADPH oxidase, which further decreases the NADPH/

NADP+ ratio (Inoguchi et al., 2003).
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Fig. 4. Schematic representation of possible mechanisms arbitrating hyperglycemia-induced oxidative stress. Hyperglycemia may regulate reactive oxygen species

(ROS) production and oxidative stress by a number of mechanisms. Increased oxidative damage may be caused by alteration of key enzymes such as nitric oxide

synthase (NOS), heme oxygenase (HO), and aldose reductase (AR). For example, increased NOS activity, superoxide production, and conversion of NO to

peroxynitrite can contribute to oxidative damage. Increased AR activity may lead to decreased NADPH/NADP+ ratio and depletion of cofactors for anti-oxidant

enzymes. Augmented HO activity may contribute to oxidative stress by increasing redox active iron accumulation in the heart tissues. Other contributing factors that

increase oxidative stress include augmented glucose auto-oxidation, glucose flux through the mitochondrial electron transport chain (ETC), and interaction of

advanced glycation end-products (AGE) with their receptors (RAGE) (O2
�, superoxide).
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Recently, an important pathway leading to the production of

oxidative stress has been identified as increased glucose flux

through the electron transport chain and subsequently aug-

mented O2
� production (Nishikawa et al., 2000; Brownlee,

2001). Interestingly, researchers have identified that benfotia-

mine, an inhibitor which prevents mitochondrial O2
� produc-

tion, can attenuate major hyperglycemia-induced biochemical

pathways, including AGE formation and PKC activation

(Hammes et al., 2003). Although, this compound has not been

tested for the treatment of diabetic cardiomyopathy, it has been

shown to be beneficial in preventing experimental diabetic

retinopathy and dyslipidemia (Hammes et al., 2003; Babaei-

Jadidi et al., 2004). Augmented O2
� anion production may

potentiate oxidant injury by reacting with hydroxyl radicals and

hydrogen peroxide (Nishikawa et al., 2000). Superoxide may

also react with NO to produce peroxynitrite, which in turn can

increase lipid peroxidation, protein nitration, and oxidizes low

density lipoproteins (LDLs) (Griendling & FitzGerald, 2003).

The importance of NO in augmenting oxidative stress in

diabetic complication is being realized. Endothelium-depen-

dent vasodilatation has shown to be altered in patients with

diabetes (McVeigh et al., 1992; Lambert et al., 1996; Dogra et

al., 2001; Van de Ree et al., 2001; Johnstone et al., 1993). We

have shown that following 1 month of diabetes, streptozotocin-

induced diabetic heart tissues exhibit increased eNOS and

iNOS mRNA levels, in association with no alteration of nitrite

and nitrate production (Farhangkhoee et al., 2003). Interest-

ingly, diabetic heart tissues also showed increased nitrotyrosine

immunoreactivity (Farhangkhoee et al., 2005). These results

suggest that hyperglycemia-induced NOS expression is aug-

mented. In order to maintain vasoregulation and to counter the

effects of increased vasoconstrictors (ETs), an increase in NO
production would be required. Our studies indicate an increase

in NOS in the heart but no significant changes in nitrite and

nitrate levels as compared to controls (Farhangkhoee et al.,

2003). It is plausible that NO is increased; however, the

bioavailability is reduced through sequestration by reactive

oxygen species (ROS). The mechanism of NO alteration and

cellular dysfunction could underlie the interaction between NO

and AR enzyme. Interestingly, NO donors have been reported

to inhibit the activity of AR (Srivastava et al., 2003). Chemical

inhibition of NOS in non-diabetic rats also increases AR

activity (Chandra et al., 2002). It is plausible that basal NO

regulates AR activity; however, during diabetes reduced NO

availability in concert with increased oxidative stress may

contribute to increased AR activity.

The alteration of the NOS, particularly eNOS, may

contribute to oxidative stress and endothelial dysfunction

(Ogita & Liao, 2004). In endothelial cells, eNOS is localized

in the membrane invagination, known as the caveolae, by

caveolin-1 (Feron et al., 1996, 1998). Caveolin-1 also co-

localizes with a CD36 (Lisanti et al., 1994; Uittenbogaard et

al., 2000), a scavenger receptor able to bind to modified

proteins such as oxidized low density lipoproteins (ox-LDLs)

(Endemann et al., 1993). We have recently shown that glucose

increases CD36 mRNA and protein expression in MVECs

(Farhangkhoee et al., 2005). We have further demonstrated that

endothelial cells treated with high levels of glucose in the

presence of ox-LDL increase uptake of the modified lipopro-

tein, as well as increasing oxidative stress. Specific inhibition

of CD36 prevented ox-LDL uptake, oxidative stress, and

endothelial dysfunction (Farhangkhoee et al., 2005). Due to the

spatial arrangement of CD36 and eNOS, it is plausible that

CD36-mediated increased ox-LDL uptake and ROS production
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could sequester NO and further aggravate the oxidant injury.

This pathway may provide a model for continuous oxidative

stress production by the eNOS-caveolin-CD36 axis in diabetic

microangiopathy.

Therapeutic interventions to combat oxidative stress have

traditionally been aimed at using scavengers to mitigate the

effects of ROS. These scavengers, however, have not been

beneficial in preventing diabetes-induced damage. Compounds

like benfotiamine, which prevent the formation of ROS, may

provide a better avenue (Nishikawa et al., 2000; Hammes et al.,

2003). Studies targeting the inhibition of proteins altered

during long-standing diabetes have also shown reduction in

oxidative stress (Srivastava et al., 1989; Nishikawa et al., 2000;

Sonta et al., 2004). We have demonstrated a possible role of

heme oxygenase (HO), a stress response protein, in mediating

diabetes-induced oxidative stress in the heart (Farhangkhoee et

al., 2003). HO is an enzyme that catalyzes the degradation of

heme into carbon monoxide, biliverdin which is subsequently

converted to bilirubin by biliverdin reductase, and free ferrous

iron (Fe2+) (Maines, 1997). Our results suggest that inhibition

of HO system can prevent iron accumulation and diabetes-

mediated oxidative stress in the heart (Farhangkhoee et al.,

2003).

Downstream mediators of oxidant injury include PKC, NF-

nB, and a recently identified stress-response protein, poly (ADP-
ribose) polymerase (PARP). PARP is a ubiquitous enzyme that is

activated by a number of factors including ionizing radiation,

alkylating agents and oxidants (Decker & Muller, 2002).

Activated PARP may regulate the activity of histones, transcrip-

tion factors (NF-nB), and other intracellular proteins such as

glyceraldehyde-3-phosphate dehydrogenase (Du et al., 2003).

Researchers have shown that impaired endothelium-dependent

NO release and functional changes in the heart can be prevented

by PJ34, a PARP inhibitor (Pacher et al., 2002; Szabo, 2002). In

addition, PARP knockout animals have been shown to be

resistant against streptozotocin-induced diabetes (Masutani et

al., 1999; Pieper et al., 1999). Presently, PARP inhibitors are in

clinical trials to investigate the toxicity and safety of the drug.

On the basis of the aforementioned studies, inhibiting

oxidative stress may provide a treatment avenue for diabetic

cardiomyopathy. Studies indicate that impaired endothelium-

dependent vasodilatation in both type 1 and type 2 diabetic

patients may be reversed by ascorbic acid (Ting et al., 1996;

Timimi et al., 1998). The mechanism of the beneficial effects of

ascorbic acid on vascular responses is not yet fully elucidated.

Treatment of non-diabetic hypertensive patients with ascorbic

acid has resulted in a reduction of blood pressure without

significant changes in systemic NO (Duffy et al., 1999).

Studies with vitamin E, vitamin C, and h-carotene have,

however, failed to show a significant retardation in cardiovas-

cular disease progression (Jain et al., 1996; Marchioli, 1999;

Maxwell, 1999).

3.5. Free fatty acid accumulation and oxidative metabolism

The metabolic changes associated with the diabetic myo-

cardium have been extensively studied (Bell, 1995; Hopfner et
al., 1998; Carvajal & Moreno-Sanchez, 2003; Cosson &

Kevorkian, 2003). The primary metabolic derangements

include free fatty acid (FFA) accumulation, which results from

both increased lipolysis of triglycerides and increased uptake,

and the shift to FFA oxidation for energy requirements

(Rodrigues et al., 1998). Under physiological conditions,

energy from ATP is derived from the oxidation of glucose,

FFAs, pyruvate, and ketone bodies. During chronic diabetes,

however, ATP production is primarily derived from h-
oxidation of FFAs (Cai & Kang, 2001). An increased

dependence on FFA oxidation leads to aberrant metabolic

changes in the myocytes which include increased oxygen

consumption, formation of toxic lipid intermediates, and

myocyte toxicity and loss (Rodrigues et al., 1998; Nakayama

et al., 2001; Fang et al., 2004).

In addition to increased h-oxidation in cardiomyocytes, the

oxidation of other compounds such as glucose and pyruvate is

reduced (Cai & Kang, 2001). These changes occur due to

numerous events that inhibit oxidative phosphorylation of

glucose such as inhibition of pyruvate dehydrogenase (PDH)

(Rodrigues et al., 1998; Cai & Kang, 2001; Hayat et al., 2004);

decreased glucose phosphorylation (Cai & Kang, 2001); and

decreased transcription of glucose transporters like glucose

transporter 4 (Li & McNeill, 2001). Despite the evidence

suggesting decreased glucose transport in cardiomyocytes, the

effects of hyperglycemia-induced damage in the heart, such as

increased flux of glucose through the AR pathway, still occur

(Ramasamy et al., 1998; Trueblood & Ramasamy, 1998).

These results suggest that glucose utilization instead of glucose

transport may play a more important role in diabetic

cardiomyopathy.

The role of FFA in vascular endothelial dysfunction is being

realized. Increased FFA levels in diabetic patients may lead to

endothelial damage by a number of mechanisms. Reports

indicate increased oxidative stress in endothelial cells exposed

to high levels of palmitate (Inoguchi et al., 2000). Increased

FFA-induced ROS production was normalized with PKC

inhibitors suggesting an important downstream role of PKC

in mediating oxidative stress. Furthermore, FFA may impair

endothelial NO production (Steinberg et al., 2000; Kim et al.,

2005). Such a role of FFA may, in part, underlie endothelium-

dependent vasodilatation in diabetics (De Kreutzenberg et al.,

2000; Steinberg et al., 2000). Thus, inhibiting FFA oxidation

may represent a potential therapeutic intervention. Trimetazi-

dine (1-[2,3,4-trimethoxibenzyl]-piperazine) has been identi-

fied as the potential compound that may inhibit FFA oxidation

and restore proper glucose utilization (Stanley & Marzilli,

2003). Clinical trials have shown beneficial effects of

trimetazidine on left ventricular function assessed by ventric-

ular volumes and ejection fraction (Rosano et al., 2003; Vitale

et al., 2004). Other interventions have been directed at the

control of lipid metabolism through the peroxisome prolif-

erator-activated receptors (PPARs). PPARs are transcription

factors that regulate multitude of genes involved in lipid

metabolism (Francis et al., 2003; Gilde & Bilsen, 2003; Lee et

al., 2003). Transgenic mice overexpressing PPARa show

increased myocardial fatty acid oxidation rates and decreased



Table 1

Therapeutic targets for diabetic cardiomyopathy

Therapeutic target Potential benefits

Vasoactive factors

(Blockers of ET, NO enhancers)

Normalization of blood flow

Reduced ECM protein deposition

Aminoguanidine

(AGE formation inhibitors)

Increased blood vessel compliance

Reduced oxidative stress

Reduced NF-nB activation

Reduced ECM protein deposition

AR inhibitors Normalization of pseudohypoxia

Reduced oxidative stress

Reduced osmotic stress

ATP preservation

PKC inhibitors Reduced vascular permeability

Reduced oxidative stress

Reduced growth factor expression

Reduced ECM protein deposition

HO inhibitors Reduced iron accumulation

Reduced oxidative stress

PARP inhibitors Normalization of endothelial function

Reduced oxidant injury

FFA oxidation inhibitors Normalization of FFA dysmetabolism

PPARa inhibitors Reduced FFA oxidation

Blockers of intracellular molecules

(PKB, MAPK, SGK, NF-nB)
Reduce ECM protein deposition

Reduced oxidative stress signaling

ATP, adenosine triphosphate; AGE, advanced glycation end-products; AR,

aldose reductase; ET, endothelin; ECM, extracellular matrix; FFA, free fatty

acid; HO, heme oxygenase; MAPK, mitogen-activated protein kinase; NO,

nitric oxide; NF-nB, nuclear factor-nB; PPAR, peroxisome proliferator-

activated receptor; PARP, poly (ADP-ribose) polymerase; PKB, protein kinase

B; PKC, protein kinase C; SGK, serum- and glucocorticoid-regulated kinase.
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glucose uptake and oxidation (Finck et al., 2002). These

changes were also associated with left ventricular abnormali-

ties. Interestingly, PPARa-deficient mice are protected against

the development of diabetes-induced cardiac hypertrophy

(Finck et al., 2003). These studies suggest the inhibition of

PPARa may be important in the prevention of diabetic

dysmetabolism. Other members of the PPAR family may also

be involved in diabetes-induced changes in the heart. PPARg

alteration may be the mechanism of CD36 up-regulation,

which has been shown to mediate increased oxidative stress in

endothelial cells (Liu et al., 2004). However, such a notion

requires further experimental evidence, as many clinical studies

have indicated that PPARg agonists are important in alleviating

the complications of diabetes (Bogacka et al., 2004; Hallsten et

al., 2004; Wang et al., 2005). For instance, the PPARg agonist

rosiglitazone, a thiazolidinediones, was shown to enhance

insulin stimulated myocardial glucose uptake (Hallsten et al.,

2004). It is plausible that the beneficial effects of PPARg

agonists (normalization of energy metabolism in myocytes)

supersede any detrimental effects such as CD36 alteration.

3.6. Intracellular signaling molecules

The role of intracellular kinase PKC has been extensively

studied in cultured endothelial cells and target organs of

chronic complications (Giles et al., 1998; Liu et al., 1999; Way

et al., 2001, 2002; Guo et al., 2003). Although inhibition of

PKC has shown beneficial effects in animal models, clinical

trials have failed to show significant normalization of diabetes-

induced changes (The PKC-DRS Study Group, 2005). These

findings indicate a potential crosstalk and redundancy in

signaling molecules at least in other target organs of diabetic

complications. Recently, we have shown that ET-mediated up-

regulation of ECM proteins in cultured endothelial cells may be

arbitrated via increased activity of MAPK pathway (Xin et al.,

2004). Activation of MAPK has been associated with reduced

contractility of cultured cardiomyocytes (Wold & Ren, 2004).

We have also demonstrated an important crosstalk between

MAPK pathway, PKC, and protein kinase B (PKB) in cultured

endothelial cells (Xin et al., 2004, 2005). In cultured

endothelial cells, high levels of glucose increase ECM protein

expression by activation of a complex cascade of protein

kinases. Specific inhibition of MAPK, PKC, or PKB is able to

prevent cross-activation of other kinases and normalize

glucose-induced ECM protein expression.

Much of the studies aimed at elucidating the signal

transducers in diabetic complications have focused on

kinases which are well established in other disease models.

Recently, serum- and glucocorticoid-regulated kinase has

been implicated in glucose-induced ECM protein elaboration

(Khan et al., 2005). We have shown that inhibition of serum-

and glucocorticoid-regulated kinase-1 by small interfering

RNA-mediated gene silencing leads to complete abolishment

of glucose-induced fibronectin expression (Khan et al.,

2005). These studies provide novel targets for preventing

cardiac microvessel BM thickening and perhaps interstitial

fibrosis.
4. Concluding remarks

Since the discovery of diabetic cardiomyopathy over 30

years ago, many researchers have attempted to elucidate the

pathogenesis of this complication. Diabetic myocardial disease

is characterized by cardiomyocyte hypertrophy, interstitial

fibrosis, thickening of capillary BMs, capillary microaneur-

ysms, and reduced capillary density. Clinical, epidemiological,

and experimental data suggest that the pathogenesis of diabetic

cardiomyopathy is multifactorial. The mechanisms that lead to

the development and the progression of cardiomyopathy may

include reduced compliance of the myocardium due to

increased collagen deposition and fibrosis, microvascular

dysfunction, and disturbances in cardiomyocyte energy metab-

olism. Reports indicate that chronic diabetes affects the

MVECs in addition to the myocytes. Such a notion is

paralleled in other target organs of chronic diabetic complica-

tions and represents a novel avenue for therapy. The

pathogenetic role of endothelial dysfunction in diabetic

cardiomyopathy is especially evident in the relationship

between cardiac endothelial cells and changes in cardiac

growth and performance. In addition, early structural and

functional alterations in the heart may arise due to impaired

blood flow and elaboration of ECM proteins, which lead to BM

thickening and interstitial fibrosis. Vasoactive factors such as

ET-1 and NO should therefore comprise our first line therapy to

combat the adverse effects of hyperglycemia. ET-1 has been

clearly established in causing vasoconstriction in target organs

of diabetic complications. Such altered vasoregulation may be
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precipitated with oxidative stress-mediated NO sequestration

and reduced NO availability. Elaboration of ET-1 and reduction

in NO may transduce signals to vascular endothelial and

contractile cells, respectively, leading to myocyte hypertrophy

and increased expression of ECM proteins. BM thickening, in

concert with reduced blood flow, produces ischemia in the

tissue microenvironment. Such focal scarring in the heart is

clearly evident in animal models of chronic diabetes.

Oxygen demand of the tissue is one of the most important

signals for the elaboration of angiogenic factor, VEGF.

Inability of cardiac MVECs to up-regulate VEGF or VEGF

receptors could be the distinguishing factor between cardio-

myopathy and highly angiogenic retinopathy. Whether such

inability of the cardiac tissue to mount a proliferative/

reparative response is due to the bystander cells including

contractile cells remains to be determined. Gene therapy may

hold great promise for increasing endothelial proliferation,

restoring normal vascular function, and treating diabetic

cardiomyopathy. The prospects are limited by our limited

knowledge of the risks of gene therapy and by the gene

transfer methods. With the current knowledge, however, it is

evident that targeting one specific pathway is not practical, as

a vast variety of changes are induced by chronic diabetes. The

best approach may be to provide a combinatorial therapy

intended to stimulate or inhibit more than one aspect of the

disease process. The strategies that improve the cardiac

endothelial function or re-growth of functional blood vessels

to the ischemic heart are of great clinical importance. Table 1

summarizes the various molecules that may be exploited as

therapeutic targets to restore vascular endothelial integrity.

Inhibiting oxidative stress and restoring endothelium-depen-

dent vasoregulation could very well represent the best strategy

for therapeutic intervention.
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