References



1. Ames, R. S., B. Holskin, M. Mitcho, D. Shalloway, and M. Chen. 1990. Induction of sensitivity to the cytotoxic action of tumor necrosis factor alpha by adenovirus E1A is independent of transformation and transcriptional activation. J. Virol. 64:4115-4122.

2. Arsenault, H. and J. M. Weber. 1993. Mapping of the mAb73 epitope on Ad2 E1A proteins with random peptide libraries and deletion mutants. FEMS Microbiol. Lett. 114:37-40.

3. Bannister, A. J. and T. Kouzarides. 1995. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J. 14:4758-4762.

4. Bautista, D. S., M. Hitt, J. McGrory, and F. L. Graham. 1991. Isolation and characterization of insertion mutants in E1A of adenovirus type 5. Virology 182:578-596.

5. Boulukos, K. E. and E. B. Ziff. 1993. Adenovirus 5 E1A proteins disrupt the neuronal phenotype and growth factor responsiveness of PC12 cells by a conserved region 1-dependent mechanism. Oncogene 8:237-248.

6. Boyd, J. M., T. Subramanian, U. Schaeper, M. La Regina, S. Bayley, and G. Chinnadurai. 1993. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 12:469-478.

7. Braun, T., E. Bober, and H. H. Arnold. 1992. Inhibition of muscle differentiation by the adenovirus E1a protein: repression of the transcriptional activating function of the HLH protein Myf-5. Genes Dev. 6:888-902.

8. Caporossi, D. and S. Bacchetti. 1990. Definition of adenovirus type 5 functions involved in the induction of chromosomal aberrations in human cells. J. Gen. Virol. 71:801-808.

9. Caruso, M., F. Martelli, A. Giordano, and A. Felsani. 1993. Regulation of MyoD gene transcription and protein function by the transforming domains of the adenovirus E1A oncoprotein. Oncogene 8:267-278.

10. Colby, W. W. and T. Shenk. 1981. Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J. Virol. 39:977-980.

11. Davenport, E. A. and E. J. Taparowsky. 1990. Novel phenotype of C3H 10T1/2 fibroblasts cotransfected with the c-Ha-ras and adenovirus 5 E1A oncogenes. Mol. Carcinog. 3:83-92.

12. Douglas, J. L., S. Gopalakrishnan, and M. P. Quinlan. 1991. Modulation of transformation of primary epithelial cells by the second exon of the Ad5 E1A12S gene. Oncogene 6:2093-2103.

13. Douglas, J. L. and M. P. Quinlan. 1996. Structural limitations of the Ad5 E1A 12S nuclear localization signal. Virology 220:339-349.

14. Downey, J. F., C. M. Evelegh, P. E. Branton, and S. T. Bayley. 1984. Peptide maps and N-terminal sequences of polypeptides from early region 1A of human adenovirus 5. J. Virol. 50:30-37.

15. Duerksen-Hughes, P. J., T. W. Hermiston, W. S. M. Wold, and L. R. Gooding. 1991. The amino-terminal portion of CD1 of the adenovirus E1A proteins is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse cells. J. Virol. 65:1236-1244.

16. Dumont, D. J., M. L. Tremblay, and P. E. Branton. 1989. Phosphorylation at serine 89 induces a shift in gel mobility but has little effect on the function of adenovirus type 5 E1A proteins. J. Virol. 63:987-991.

17. Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. Lawrence, and D. M. Livingston. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8:869-884.

18. Egan, C., T. N. Jelsma, J. A. Howe, S. T. Bayley, B. Ferguson, and P. E. Branton. 1988. Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol. Cell Biol. 8:3955-3959.

19. Enkemann, S. A., S. F. Konieczny, and E. J. Taparowsky. 1990. Adenovirus 5 E1A represses muscle-specific enhancers and inhibits expression of the myogenic regulatory factor genes, MyoD1 and myogenin. Cell Growth Differ. 1:375-382.

20. Fahnestock, M. L. and J. B. Lewis. 1989. Genetic dissection of the transactivating domain of the E1a 289R protein of adenovirus type 2. J. Virol. 63:1495-1504.

21. Gedrich, R. W., S. T. Bayley, and D. A. Engel. 1992. Induction of AP-1 DNA-binding activity and c-fos mRNA by the adenovirus 243R E1A protein and cyclic AMP requires domains necessary for transformation. J. Virol. 66:5849-5859.

22. Geisberg, J. V., J. L. Chen, and R. P. Ricciardi. 1995. Subregions of the adenovirus E1A transactivation domain target multiple components of the TFIID complex. Mol. Cell Biol. 15:6283-6290.

23. Glenn, G. M. and R. P. Ricciardi. 1985. Adenovirus 5 early region 1A host range mutants hr3, hr4, and hr5 contain point mutations which generate single amino acid substitutions. J. Virol. 56:66-74.

24. Glenn, G. M. and R. P. Ricciardi. 1987. An adenovirus type 5 E1A protein with a single amino acid substitution blocks wild-type E1A transactivation. Mol. Cell Biol. 7:1004-1011.

25. Gopalakrishnan, S., R. S. Fischer, and M. P. Quinlan. 1996. Induction of a complex between rasGAP and a novel 110 kD protein is required for immortalization of primary epithelial cells by the E1A 12S oncoprotein of adenovirus. Oncogene 13:2659-2669.

26. Gopalakrishnan, S. and M. P. Quinlan. 1995. Modulation of E-cadherin localization in cells expressing wild-type E1A 12S or hypertransforming mutants. Cell Growth Differ. 6:985-998.

27. Green, M., P. M. Loewenstein, R. Pusztai, and J. S. Symington. 1988. An adenovirus E1A protein domain activates transcription in vivo and in vitro in the absence of protein synthesis. Cell 53:921-926.

28. Gutch, M. J. and N. C. Reich. 1991. Repression of the interferon signal transduction pathway by the adenovirus E1A oncogene. Proc. Natl. Acad. Sci. USA 88:7913-7917.

29. Haley, K. P., J. Overhauser, L. E. Babiss, H. S. Ginsberg, and N. C. Jones. 1984. Transformation properties of type 5 adenovirus mutants that differentially express the E1A gene products. Proc. Natl. Acad. Sci. USA 81:5734-5738.

30. Harrison, T., F. Graham, and J. Williams. 1977. Host range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77:319-329.

31. Hearing, P. and T. Shenk. 1985. Sequence-independent autoregulation of the adenovirus type 5 E1A transcription unit. Mol. Cell Biol. 5:3214-3221.

32. Heasley, L. E., S. Benedict, J. Gleavy, and G. L. Johnson. 1991. Requirement of the adenovirus E1A transformation domain 1 for inhibition of PC12 cell neuronal differentiation. Cell Regul. 2:479-489.

33. Holt, S. E. and V. G. Wilson. 1995. Mutational analysis of the 18-base-pair inverted repeat element at the bovine papillomavirus origin of replication: identification of critical sequences for E1 binding and in vivo replication. J. Virol. 69:6525-6532.

34. Howe, J. A., J. S. Mymryk, C. Egan, P. E. Branton, and S. T. Bayley. 1990. Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc. Natl. Acad. Sci. USA 87:5883-5887.

35. Jelinek, T., D. S. Pereira, and F. L. Graham. 1994. Tumorigenicity of adenovirus-transformed rodent cells is influenced by at least two regions of adenovirus type 12 early region 1A. J. Virol. 68:888-896.

36. Jelinek, T. and F. L. Graham. 1992. Recombinant human adenoviruses containing hybrid adenovirus type 5 (Ad5)/Ad12 E1A genes: characterization of hybrid E1A proteins and analysis of transforming activity and host range. J. Virol. 66:4117-4125.

37. Jelsma, T. N., J. A. Howe, C. M. Evelegh, N. F. Cunniff, M. H. Skiadopoulos, M. R. Floroff, J. E. Denman, and S. T. Bayley. 1988. Use of deletion and point mutants spanning the coding region of the adenovirus 5 E1A gene to define a domain that is essential for transcriptional activation. Virology 163:494-502.

38. Jones, N. and T. Shenk. 1979. Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17:683-689.

39. Kaddurah-Daouk, R., J. W. Lillie, G. H. Daouk, M. R. Green, R. Kingston, and P. Schimmel. 1990. Induction of a cellular enzyme for energy metabolism by transforming domains of adenovirus E1a. Mol. Cell Biol. 10:1476-1483.

40. Kalman, D., K. Whittaker, J. M. Bishop, and P. H. O'Lague. 1993. Domains of E1A that bind p105Rb, p130, and p300 are required to block nerve growth factor-induced neurite growth in PC12 cells. Mol. Biol. Cell 4:353-361.

41. Kim, D. H., J. H. Chang, K. H. Lee, H. Y. Lee, and S. J. Kim. 1997. Mechanism of e1a-induced transforming growth factor-beta (tgf-beta) resistance in mouse keratinocytes involves repression of tgf-beta type ii receptor transcription. J. Biol. Chem. 272:688-694.

42. Kitabayashi, I., R. Eckner, Z. Arany, R. Chiu, G. Gachelin, D. M. Livingston, and K. K. Yokoyama. 1995. Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 14:3496-3509.

43. Krantz, C. K., B. A. Routes, M. P. Quinlan, and J. L. Cook. 1996. E1A second exon requirements for induction of target cell susceptibility to lysis by natural killer cells: implications for the mechanism of action. Virology 217:23-32.

44. Kraus, V. B., E. Moran, and J. R. Nevins. 1992. Promoter-specific trans-activation by the adenovirus E1A12S product involves separate E1A domains. Mol. Cell Biol. 12:4391-4399.

45. Kuppuswamy, M., T. Subramanian, and G. Chinnadurai. 1988. Separation of immortalization and T24-ras oncogene cooperative functions of adenovirus E1a. Oncogene 2:613-615.

46. Kuppuswamy, M. N. and G. Chinnadurai. 1987. Relationship between the transforming and transcriptional regulatory functions of adenovirus 2 E1a oncogene. Virology 159:31-38.

47. Lillie, J. W., M. Green, and M. R. Green. 1986. An adenovirus E1a protein region required for transformation and transcriptional repression. Cell 46:1043-1051.

48. Lillie, J. W., P. M. Loewenstein, M. R. Green, and M. Green. 1987. Functional domains of adenovirus type 5 E1a proteins. Cell 50:1091-1100.

49. Linder, S., P. Popowicz, C. Svensson, H. Marshall, M. Bondesson, and G. Akusjarvi. 1992. Enhanced invasive properties of rat embryo fibroblasts transformed by adenovirus E1A mutants with deletions in the carboxy-terminal exon. Oncogene 7:439-443.

50. Miller, M. E., D. A. Engel, and M. M. Smith. 1995. Cyclic AMP signaling is required for function of the N-terminal and CR1 domains of adenovirus E1A in Saccharomyces cerevisiae. Oncogene 11:1623-1630.

51. Missero, C., E. Filvaroff, and G. P. Dotto. 1991. Induction of transforming growth factor b1 resistance by the E1A oncogene requires binding to a specific set of cellular proteins. Proc. Natl. Acad. Sci. USA 88:3489-3493.

52. Montano, X. and D. P. Lane. 1987. The adenovirus Ela gene induces differentiation of F9 teratocarcinoma cells. Mol. Cell Biol. 7:1782-1790.

53. Montell, C., E. F. Fisher, M. H. Caruthers, and A. J. Berk. 1982. Resolving the functions of overlapping viral genes by site-specific mutagenesis at a mRNA splice site. Nature 295:380-384.

54. Montell, C., G. Courtois, C. Eng, and A. Berk. 1984. Complete transformation by adenovirus 2 requires both E1A proteins. Cell 36:951-961.

55. Moran, B. and B. Zerler. 1988. Interactions between cell growth-regulating domains in the products of the adenovirus E1A oncogene. Mol. Cell Biol. 8:1756-1764.

56. Moran, E., T. Grodzicker, R. J. Roberts, M. B. Mathews, and B. Zerler. 1986a. Lytic and transforming functions of individual products of the adenovirus E1A gene. J. Virol. 57:765-775.

57. Moran, E., B. Zerler, T. M. Harrison, and M. B. Mathew. 1986b. Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol. Cell Biol. 6:3470-3480.

58. Moran, E. 1988. A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature 334:168-170.

59. Mymryk, J. S., R. W. H. Lee, and S. T. Bayley. 1992. Ability of adenovirus 5 E1A proteins to suppress differentiation of BC3H1 myoblasts correlates with their binding to a 300 kDa cellular protein. Mol. Biol. Cell 3:1107-1115.

60. Mymryk, J. S. and S. T. Bayley. 1993. Induction of gene expression by exon 2 of the major E1A proteins of adenovirus type 5. J. Virol. 67:6922-6928.

61. Offringa, R., S. Gebel, H. van Dam, M. Timmers, A. Smits, R. Zwarts, B. Stein, J. L. Bos, A. van der Eb, and P. Herrlich. 1990. A novel function of the transforming domain of E1a: repression of AP-1 activity. Cell 62:527-538.

62. Osborne, T. F., R. B. Gaynor, and A. J. Berk. 1982. The TATA homology and the mRNA 5' untranslated sequence are not required for expression of essential adenovirus E1A functions. Cell 29:139-148.

63. Pereira, D. S., K. L. Rosenthal, and F. L. Graham. 1995. Identification of adenovirus E1A regions which affect MHC class I expression and susceptibility to cytotoxic T lymphocytes. Virology 211:268-277.

64. Quinlan, M. P., P. Whyte, and T. Grodzicker. 1988. Growth factor induction by the adenovirus type 5 E1A 12S protein is required for immortalization of primary epithelial cells. Mol. Cell Biol. 8:3191-3203.

65. Raychaudhuri, P., S. Bagchi, S. H. Devoto, V. B. Kraus, E. Moran, and J. R. Nevins. 1991. Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev. 5:1200-1211.

66. Routes, J. M., H. Li, S. T. Bayley, S. Ryan, and D. J. Klemm. 1996. Inhibition of IFN-stimulated gene expression and IFN induction of cytolytic resistance to natural killer cell lysis correlate with E1A-p300 binding. J. Immunol. 156:1055-1061.

67. Sanchez Prieto, R., M. Lleonart, and C. Ramon. 1995. Lack of correlation between p53 protein level and sensitivity of DNA-damaging agents in keratinocytes carrying adenovirus E1a mutants. Oncogene 11:675-682.

68. Sawada, Y., J. Raskova, K. Fujinaga, and K. J. Raska. 1994. Identification of functional domains of adenovirus tumor-specific transplantation antigen in types 5 and 12 by viable viruses carrying chimeric E1A genes. Int. J. Cancer 57:598-603.

69. Schaeper, U., J. M. Boyd, S. Verma, E. Uhlmann, T. Subramanian, and G. Chinnadurai. 1995. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc. Natl. Acad. Sci. USA 92:10467-10471.

70. Schneider, J. F., F. Fisher, C. R. Goding, and N. C. Jones. 1987. Mutational analysis of the adenovirus E1a gene: the role of transcriptional regulation in transformation. EMBO J. 6:2053-2060.

71. Shisler, J., P. Duerksen-Hughes, T. M. Hermiston, W. S. M. Wold, and L. R. Gooding. 1996. Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J. Virol. 70:68-77.

72. Slack, R. S., J. Craig, S. Costa, and M. W. McBurney. 1995. Adenovirus 5 E1A induced differentiation of P19 embryonal carcinoma cells requires binding to p300. Oncogene 10:19-25.

73. Smith, D. H., D. M. Kegler, and E. B. Ziff. 1985. Vector expression of adenovirus type 5 E1a proteins: evidence for E1a autoregulation. Mol. Cell Biol. 5:2684-2696.

74. Smith, D. H. and E. B. Ziff. 1988. The amino-terminal region of the adenovirus serotype 5 E1a protein performs two separate functions when expressed in primary baby rat kidney cells. Mol. Cell Biol. 8:3882-3890.

75. Solnick, D. 1981. An adenovirus mutant defective in splicing RNA from early region 1A. Nature 291:508-510.

76. Somasundaram, K., G. Jayaraman, T. Williams, E. Moran, S. Frisch, and B. Thimmapaya. 1996. Repression of a matrix metalloprotease gene by E1A correlates with its ability to bind to cell type-specific transcription factor AP-2. Proc. Natl. Acad. Sci. USA 93:3088-3093.

77. Stein, R. W., M. Corrigan, P. Yaciuk, J. Whelan, and E. Moran. 1990. Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J. Virol. 64:4421-4427.

78. Stein, R. W. and E. B. Ziff. 1987. Repression of insulin gene expression by adenovirus type 5 E1a proteins. Mol. Cell Biol. 7:1164-1170.

79. Stephens, C. and E. Harlow. 1987. Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J. 6:2027-2035.

80. Subramanian, T., M. Kuppuswamy, R. J. Nasr, and G. Chinnadurai. 1988. An N-terminal region of adenovirus E1a essential for cell transformation and induction of an epithelial cell growth factor. Oncogene 2:105-112.

81. Subramanian, T., M. La Regina, and G. Chinnadurai. 1989. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene 4:415-420.

82. Taylor, D. A., V. B. Kraus, J. J. Schwarz, E. N. Olson, and W. E. Kraus. 1993. E1A-mediated inhibition of myogenesis correlates with a direct physical interaction of E1A12S and basic helix-loop-helix proteins. Mol. Cell Biol. 13:4714-4727.

83. Tsuji, Y., J. Ninomiya Tsuji, S. V. Torti, and F. M. Torti. 1993. Augmentation by IL-1 alpha of tumor necrosis factor-alpha cytotoxicity in cells transfected with adenovirus E1A. J. Immunol. 150:1897-1907.

84. Urbanelli, D., Y. Sawada, J. Raskova, N. C. Jones, T. Shenk, and K. Raska,Jr. 1989. C-terminal domain of the adenovirus E1A oncogene product is required for induction of cytotoxic T lymphocytes and tumor-specific transplantation immunity. Virology 173:607-614.

85. Velcich, A. and E. Ziff. 1985. Adenovirus E1a proteins repress transcription from the SV40 early promoter. Cell 40:705-716.

86. Velcich, A. and E. Ziff. 1988. Adenovirus E1a ras cooperation activity is separate from its positive and negative transcription regulatory functions. Mol. Cell Biol. 8:2177-2183.

87. Velcich, A. and E. B. Ziff. 1989. The adenovirus-5 12S E1a protein, but not the 13S induces expression of the endoA differentiation marker in F9 cells. Oncogene 4:707-713.

88. Wada, T., Y. Nogi, H. Handa, and T. Fukasawa. 1990. Strain-specific lethal effect of the adenovirus E1a protein on Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 170:470-476.

89. Wang, H., G. Draetta, and E. Moran. 1991. E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products. Mol. Cell Biol. 11:4253-4265.

90. Wang, H., Y. Rikitake, M. C. Carter, P. Yaciuk, S. E. Abraham, B. Zerler, and E. Moran. 1993. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. 67:476-488.

91. Wang, H. G., E. Moran, and P. Yaciuk. 1995. E1A promotes association between p300 and pRB in multimeric complexes required for normal biological activity. J. Virol. 69:7917-7924.

92. Webster, L. C. and R. P. Ricciardi. 1991. Trans-dominant mutants of E1A provide genetic evidence that the zinc finger of the trans-activating domain binds a transcription factor. Mol. Cell Biol. 11:4287-4296.

93. Whyte, P., H. E. Ruley, and E. Harlow. 1988. Two regions of the adenovirus early region 1A proteins are required for transformation. J. Virol. 62:257-265.

94. Whyte, P., N. M. Williamson, and E. Harlow. 1989. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67-75.

95. Winberg, G. and T. Shenk. 1984. Dissection of overlapping functions within the adenovirus type 5 E1A gene. EMBO J. 3:1907-1912.

96. Yaciuk, P., M. C. Carter, J. C. Pipas, and E. Moran. 1991. Simian virus 40 large-T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol. Cell Biol. 11:2116-2124.

97. Yu, D., T. Suen, D. Yan, L. Chang, and M. Hung. 1990. Transcriptional repression of the neu protooncogene by the adenovirus 5 E1A gene products. Proc. Natl. Acad. Sci. USA 87:4499-4503.

98. Zerler, B., B. Moran, K. Maruyama, J. Moomaw, T. Grodzicker, and H. E. Ruley. 1986. Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Mol. Cell Biol. 6:887-899.

99. Zerler, B., R. J. Roberts, M. B. Mathews, and E. Moran. 1987. Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products. Mol. Cell Biol. 7:821-829.

100. Zhu, L., S. van den Heuvel, K. Helin, A. Fattaey, M. Ewen, D. Livingston, N. Dyson, and E. Harlow. 1993. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 7:1111-1125.

101. Zieler, H. A., M. Walberg, and P. Berg. 1995. Suppression of mutations in two Saccharomyces cerevisiae genes by the adenovirus E1A protein. Mol. Cell Biol. 15:3227-3237.

go back to database of E1A mutants
go back to main page