1. Do fractionally incremented nuclear charges improve time-dependent density functional theory excitation energies as reliably as fractional orbital populations? D. N. Komsa and V. N. Staroverov, Theor. Chem. Acc. 2017, 136, 101.
  1. Structurally diverse boron-nitrogen heterocycles from an N2O23– formazanate ligand, S. M. Barbon, V. N. Staroverov, and J. B. Gilroy, Angew. Chem. Int. Ed. 2017, 56, 8173.
  1. Improved method for generating exchange-correlation potentials from electronic wave functions, E. Ospadov, I. G. Ryabinkin, and V. N. Staroverov, J. Chem. Phys. 2017, 146, 084103.
  1. Assessment of the Tao–Mo nonempirical semilocal density functional in applications to solids and surfaces, Y. Mo, R. Car, V. N. Staroverov, G. E. Scuseria, and J. Tao, Phys. Rev. B 2017, 85, 035118.
  1. Performance of a nonempirical density functional on molecules and hydrogen-bonded complexes, Y. Mo, G. Tian, R. Car, V. N. Staroverov, G. E. Scuseria, and J. Tao, J. Chem. Phys. 2016, 145, 234306.
  1. Elimination of spurious fractional charges in dissociating molecules by correcting the shape of approximate Kohn–Sham potentials, D. N. Komsa and V. N. Staroverov, J. Chem. Theory Comput. 2016, 12, 5361.
  1. Generalized average local ionization energy and its representations in terms of Dyson and energy orbitals, S. V. Kohut, R. Cuevas-Saavedra, and V. N. Staroverov, J. Chem. Phys. 2016, 145, 074113.
  1. Response to "Comment on 'Kohn–Sham exchange-correlation potentials from second-order reduced density matrices'", I. G. Ryabinkin, S. V. Kohut, R. Cuevas-Saavedra, P. W. Ayers, and V. N. Staroverov, J. Chem. Phys. 2016, 145, 037102.
  1. Origin of the step structure of molecular exchange-correlation potentials, S. V. Kohut, A. M. Polgar, and V. N. Staroverov, Phys. Chem. Chem. Phys. 2016, 18, 20938.
  1. Exact expressions for the Kohn–Sham exchange-correlation potential in terms of wave-function-based quantities, R. Cuevas-Saavedra and V. N. Staroverov, Mol. Phys. 2016, 114, 1050.
  1. Kohn–Sham exchange-correlation potentials from second-order reduced density matrices, R. Cuevas-Saavedra, P. W. Ayers, and V. N. Staroverov, J. Chem. Phys. 2015, 143, 244116.
  1. Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4][M(HCOO)3] by solid-state NMR spectroscopy, J. Xu, B. E. G. Lucier, R. Sinelnikov, V. V. Terskikh, V. N. Staroverov, and Y. Huang, Chem. Eur. J. 2015, 41, 14348.
  1. Polymorphic transitions of diborane and sub- and near-megabar pressures, A. Torabi, C. Murli, Y. Song, and V. N. Staroverov, Sci. Rep. 2015, 5, 13929.
  1. Reduction of electronic wavefunctions to Kohn–Sham effective potentials, I. G. Ryabinkin, S. V. Kohut, and V. N. Staroverov, Phys. Rev. Lett. 2015, 115, 083001.
  1. Band gap reduction in ZnO and ZnS by creating layered ZnO/ZnS heterostructures, A. Torabi and V. N. Staroverov, J. Phys. Chem. Lett. 2015, 6, 2075.
  1. Effect of extended π-conjugation on the spectroscopic and electrochemical properties of boron difluoride formazanate complexes, S. M. Barbon, V. N. Staroverov, and J. B. Gilroy, J. Org. Chem. 2015, 80, 5226.
  1. Efficient electrochemiluminescence of a readily accessible boron difluoride formazanate dye, M. Hesari, S. M. Barbon, V. N. Staroverov, Z. Ding, and J. B. Gilroy, Chem. Commun. 2015, 51, 3766.
  1. Modified Slater exchange potential with correct uniform electron gas limit, A. P. Gaiduk, I. G. Ryabinkin, and V. N. Staroverov, Can. J. Chem. 2015, 93, 91.
  1. Mechanism of the addition of alkynes to silenes and germenes: A density functional study, L. C. Pavelka, M. A. Hanson, V. N. Staroverov, and K. M. Baines, Can. J. Chem. 2015, 93, 134.
  1. Average local ionization energy generalized to correlated wavefunctions, I. G. Ryabinkin and V. N. Staroverov, J. Chem. Phys. 2014, 141, 084107. [Erratum] 2015, 143, 159901(E).
  1. Structurally tunable 3-cyanoformazanate boron difluoride dyes, S. M. Barbon, P. A. Reinkeluers, J. T. Price, V. N. Staroverov, and J. B. Gilroy, Chem. Eur. J. 2014, 20, 11340.
  1. Hierarchy of model Kohn–Sham potentials for orbital-dependent functionals: A practical alternative to the optimized effective potential method, S. V. Kohut, I. G. Ryabinkin, and V. N. Staroverov, J. Chem. Phys. 2014, 140, 18A535.
  1. Hydrogen-bond-supported dimeric boron complexes of potentially tetradentate β-diketiminate ligands, S. M. Barbon, V. N. Staroverov, P. D. Boyle, and J. B. Gilroy, Dalton Trans. 2014, 43, 240.
  1. Apparent violation of the sum rule for exchange-correlation charges by generalized gradient approximations, S. V. Kohut and V. N. Staroverov, J. Chem. Phys. 2013, 139, 164117.
  1. Efficient construction of exchange and correlation potentials by inverting the Kohn–Sham equations, A. A. Kananenka, S. V. Kohut, A. P. Gaiduk, I. G. Ryabinkin, and V. N. Staroverov, J. Chem. Phys. 2013, 139, 074112.
  1. Removal of basis-set artifacts in Kohn–Sham potentials recovered from electron densities, A. P. Gaiduk, I. G. Ryabinkin, and V. N. Staroverov, J. Chem. Theory Comput. 2013, 9, 3959.
  1. Accurate and efficient approximation to the optimized effective potential for exchange, I. G. Ryabinkin, A. A. Kananenka, and V. N. Staroverov, Phys. Rev. Lett. 2013, 111, 013001.
  1. Pressure-induced polymorphic transitions in crystalline diborane deduced by comparison of simulated and experimental vibrational spectra, A. Torabi, Y. Song, and V. N. Staroverov, J. Phys. Chem. C 2013, 117, 2210.
  1. Exact relations between the electron density and external potential for systems of interacting and noninteracting electrons, I. G. Ryabinkin and V. N. Staroverov, Int. J. Quantum Chem. 2013, 113, 1626.
  1. Self-interaction correction scheme for approximate Kohn–Sham potentials, A. P. Gaiduk, D. Mizzi, and V. N. Staroverov, Phys. Rev. A, 2012, 86, 052518.
  1. Determination of Kohn–Sham effective potentials from electron densities using the differential virial theorem, I. G. Ryabinkin and V. N. Staroverov, J. Chem. Phys. 2012, 137, 164113.
  1. Improved electronic excitation energies from shape-corrected semilocal Kohn–Sham potentials, A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev. Lett. 2012, 108, 253005.
  1. Energy expressions for Kohn–Sham potentials and their relation to the Slater–Janak theorem, P. D. Elkind and V. N. Staroverov, J. Chem. Phys. 2012, 136, 124115.
  1. A generalized gradient approximation for exchange derived from the model potential of van Leeuwen and Baerends, A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 2012, 136, 064116.
  1. Interelectron magnetic coupling in electrides with one-dimensional cavity-channel geometry, I. G. Ryabinkin and V. N. Staroverov, Phys. Chem. Chem. Phys. 2011, 13, 21615.
  1. Accurate explicitly correlated wave functions for two electrons in a square, I. G. Ryabinkin and V. N. Staroverov, J. Chem. Phys. 2011, 135, 014106.
  1. Construction of integrable model Kohn–Sham potentials by analysis of the structure of functional derivatives, A. P. Gaiduk and V. N. Staroverov, Phys. Rev. A 2011, 83, 012509.
  1. Effective local potentials for excited states, V. N. Staroverov and V. N. Glushkov, J. Chem. Phys. 2010, 133, 244104.
  1. Explicit construction of functional derivatives in potential-driven density-functional theory, A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 2010, 133, 101104.
  1. Solution of the Schrödinger equation for two electrons in axially symmetric cavities, I. G. Ryabinkin and V. N. Staroverov, Phys. Rev. A 2010, 82, 022505.
  1. Two electrons in a cylindrical box: An exact configuration-interaction solution, I. G. Ryabinkin and V. N. Staroverov, Phys. Rev. A 2010, 81, 032509.
  1. Reactivity studies of N-heterocyclic carbene complexes of germanium(II), P. A. Rupar, V. N. Staroverov, and K. M. Baines, Organometallics 2010, 29, 4871.
  1. Photodissociation of the geometric isomers of 1,2-dibromoethylene, W. Shi, V. N. Staroverov, and R. H. Lipson, J. Chem. Phys. 2009, 131, 154304.
  1. How to tell when a model Kohn–Sham potential is not a functional derivative, A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 2009, 131, 044107.
  1. Reconstruction of density functionals from Kohn–Sham potentials by integration along density scaling paths, A. P. Gaiduk, S. K. Chulkov, and V. N. Staroverov, J. Chem. Theory Comput. 2009, 5, 699.
  1. Assessment of a density functional with full exact exchange and balanced nonlocality of correlation, C. A. Jiménez-Hoyos, B. G. Janesko, G. E. Scuseria, V. N. Staroverov, and J. P. Perdew, Mol. Phys. 2009, 107, 1077.
  1. Meta-substituted thienyl benzenes: A comparative synthetic, structural and computational study, A. L. P. Cornacchio, J. T. Price, M. C. Jennings, R. McDonald, V. N. Staroverov, and N. D. Jones, J. Org. Chem. 2009, 74, 530.
  1. Local exchange potentials for electronic structure calculations, E. Cancès, G. Stoltz, G. E. Scuseria, V. N. Staroverov, and E. R. Davidson, MathS in Action 2009, 2, 1.
  1. A cryptand-encapsulated germanium(II) dication, P. A. Rupar, V. N. Staroverov, and K. M. Baines, Science 2008, 322, 1360.
  1. Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction, J. P. Perdew, V. N. Staroverov, J. Tao, and G. E. Scuseria, Phys. Rev. A 2008, 78, 052513.
  1. A family of model Kohn–Sham potentials for exact exchange, V. N. Staroverov, J. Chem. Phys. 2008, 129, 134103.
  1. Virial exchange energies from model exact-exchange potentials, A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 2008, 128, 204101.
  1. Exact-exchange energy density in the gauge of a semilocal density-functional approximation, J. Tao, V. N. Staroverov, G. E. Scuseria, and J. P. Perdew, Phys. Rev. A 2008, 77, 012509.
  1. A germanium(II)-centered dication, P. A. Rupar, V. N. Staroverov, P. J. Ragogna, and K. M. Baines, J. Am. Chem. Soc. 2007, 129, 15138.
  1. Exchange and correlation in open systems of fluctuating electron number, J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, V. N. Staroverov, and J. Tao, Phys. Rev. A 2007, 76, 040501.
  1. Self-consistent effective local potentials, A. F. Izmaylov, V. N. Staroverov, G. E. Scuseria, and E. R. Davidson, J. Chem. Phys. 2007, 127, 084113.
  1. The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques, A. F. Izmaylov, V. N. Staroverov, G. E. Scuseria, E. R. Davidson, G. Stoltz, and E. Cancès, J. Chem. Phys. 2007, 126, 084107.
  1. Meta-generalized gradient approximation: Non-empirical construction and performance of a density functional, J. Tao, J. P. Perdew, A. Ruzsinszky, G. E. Scuseria, G. I. Csonka, and V. N. Staroverov, Philos. Mag. 2007, 87, 1071; [Erratum] 2008, 88, 277(E).
  1. High-density limit of the Perdew–Burke–Ernzerhof generalized gradient approximation and related density functionals, V. N. Staroverov, G. E. Scuseria, J. P. Perdew, E. R. Davidson, and J. Katriel, Phys. Rev. A 2006, 74, 044501.
  1. Effective local potentials for orbital-dependent density functionals, V. N. Staroverov, G. E. Scuseria, and E. R. Davidson, J. Chem. Phys. 2006, 125, 081104.
  1. Optimized effective potentials yielding Hartree–Fock energies and densities, V. N. Staroverov, G. E. Scuseria, and E. R. Davidson, J. Chem. Phys. 2006, 124, 141103.
  1. Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits, J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and G. I. Csonka, J. Chem. Phys. 2005, 123, 062201.
  1. Energies of isoelectronic atomic ions from a successful meta-generalized gradient approximation and other density functionals, V. N. Staroverov, G. E. Scuseria, J. P. Perdew, J. Tao, and E. R. Davidson, Phys. Rev. A 2004, 70, 012502.
  1. Meta-generalized gradient approximation: Explanation of a realistic nonempirical density functional, J. P. Perdew, J. Tao, V. N. Staroverov, and G. E. Scuseria, J. Chem. Phys. 2004, 120, 6898.
  1. Tests of a ladder of density functionals for bulk solids and surfaces, V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, Phys. Rev. B 2004, 69, 075102; [Erratum] 2008, 78, 239907(E).
  1. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes, V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 2003, 119, 12129; [Erratum] 2004, 121, 11507(E).
  1. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids, J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
  1. Optimization of density matrix functionals by the Hartree–Fock–Bogoliubov method, V. N. Staroverov and G. E. Scuseria, J. Chem. Phys. 2002, 117, 11107.
  1. Assessment of simple exchange-correlation energy functionals of the one-particle density matrix, V. N. Staroverov and G. E. Scuseria, J. Chem. Phys. 2002, 117, 2489.
  1. The Cope rearrangement in theoretical retrospect, V. N. Staroverov and E. R. Davidson, J. Mol. Struct. (Theochem) 2001, 573, 81; [Corrigendum] 2002, 617, 225(E).
  1. A density functional method for degenerate spin-multiplet components, V. N. Staroverov and E. R. Davidson, Chem. Phys. Lett. 2001, 340, 142.
  1. Ab initio Compton maps of small molecules, V. N. Staroverov and E. R. Davidson, Mol. Phys. 2001, 99, 175.
  1. Distribution of effectively unpaired electrons, V. N. Staroverov and E. R. Davidson, Chem. Phys. Lett. 2000, 330, 161.
  1. Transition regions in the Cope rearrangement of 1,5-hexadiene and its cyano derivatives, V. N. Staroverov and E. R. Davidson, J. Am. Chem. Soc. 2000, 122, 7377.
  1. Is the hydrogen bond in water dimer and ice covalent? T. K. Ghanty, V. N. Staroverov, P. R. Koren, and E. R. Davidson, J. Am. Chem. Soc. 2000, 122, 1210.
  1. Diradical character of the Cope rearrangement transition state, V. N. Staroverov and E. R. Davidson, J. Am. Chem. Soc. 2000, 122, 186.
  1. Charge densities for singlet and triplet electron pairs, V. N. Staroverov and E. R. Davidson, Int. J. Quantum Chem. 2000, 77, 651.
  1. Electron distributions in radicals, V. N. Staroverov and E. R. Davidson, Int. J. Quantum Chem. 2000, 77, 316.
  1. Interpretation of SPM images of Langmuir–Blodgett films based on long-chain carboxylic acids, G. K. Zhavnerko, V. N. Staroverov, V. E. Agabekov, M.O. Gallyamov, and I. V. Yaminsky, Thin Solid Films 2000, 359, 98.
  1. The reduced model space method in multireference second-order perturbation theory, V. N. Staroverov and E. R. Davidson, Chem. Phys. Lett. 1998, 296, 435.
  1. Monte Carlo study of core-valence separation schemes, V. N. Staroverov, P. Langfelder, and S. M. Rothstein, J. Chem. Phys. 1998, 108, 2873.
  1. Synthesis of ω-ferrocenylalkyl derivatives with functional groups in the α-position: Mild reduction of acyl ferrocenes in the NaBH4/BF3·Et2O/THF system, D. T. Kozhich, I. A. Prokhorenko, V. A. Korshun, and V. N. Staroverov, Metalloorg. Khim. 1993, 6, 207.
    Book Chapters
  1. Density-functional approximations for exchange and correlation, V. N. Staroverov, in: A Matter of Density: Exploring the Electron Density Concept in the Chemical, Biological, and Materials Sciences, edited by N. Sukumar (John Wiley & Sons, Hoboken, NJ, 2013), pp. 125–156. [PDF]
  1. Progress in the development of exchange-correlation functionals, G. E. Scuseria and V. N. Staroverov, in: Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 669–724. [PDF]