book cover
Behan-Pelletier, V.M. and Lindo, Z. 2023. Oribatid mites: Biodiversity, Taxonomy and Ecology (1st ed.). CRC Press, Taylor & Francis Group, Boca Raton, FL. 508 pp. DOI: 10.1201/9781003214649.

 

Please email Dr. Lindo if you would like a pdf copy of any of these publications (zlindo[at]uwo[dot]ca)

2024

  • Barreto, C., Buchkowski, R.W., and Lindo, Z. 2024. Restructuring of soil food webs reduces carbon storage potential in boreal peatlands. Soil Biology and Biochemistry 193: 109413. https://doi.org/10.1016/j.soilbio.2024.109413
  • Slate, M.<…Hopkins, S.* …Lindo, Z....>, and Coe, K. 2024. Impact of changing climate on bryophyte contributions to terrestrial water, carbon, and nitrogen cycles. Accepted manuscript with New Phytologist (NPH-TR-2023-45783). *graduate student
  • Potopov, A.M., …<Lindo, Z.>… Scheu, S. 2024. Global fine-resolution data on springtail abundance and community structure. Scientific Data 11: 22. https://doi.org/10.1038/s41597-023-02784-x. (co-authors listed in alphabetical order)

2023

  • Buchkowski, R., Barreto, C., and Lindo, Z. 2023. soilfoodwebs: An R package for analyzing and simulating food web dynamics. European Journal of Soil Biology (Special Issue on Soil Food Webs). 119: 103556. https://doi.org/10.1016/j.ejsobi.2023.103556.
  • Pettit, T.*, Faulkner, K.J., Buchkowski, R.W.*, Kamath, D., and Lindo, Z. 2023. Changes in peatland soil fauna biomass alter food web structure and function under warming and hydrological changes. European Journal of Soil Biology (Special Issue on Soil Food Webs). 119: 103509. https://doi.org/10.1016/j.ejsobi.2023.103509. *graduate student,visiting graduate student, *PDF,undergraduate student, respectively.
  • Lindo, Z., Bolger, T., and Caruso, T. 2023. Stochastic processes in the structure and functioning of soil biodiversity. Frontiers in Ecology and Evolution 11 – Invited Special Topic: Models in Population, Community, and Ecosystem Dynamics. doi: 10.3389/fevo.2023.1055336 (open access)  
  • Potapov, A.M., Lindo, Z., Buchkowski, R., and Geisen, S. 2023. Multiple dimensions of soil food-web research: History and prospects. European Journal of Soil Biology (Special Issue on Soil Food Webs). 117: 103494  https://doi.org/10.1016/j.ejsobi.2023.103494
  • Barreto, C.*, Conceição, P.H.*, de Lima, E.C., Stievano, L.C., Zeppelini, D., Kolka, R.K., Hanson, P.J., and Lindo, Z. 2023. Large-scale experimental warming reduces soil faunal biodiversity through peatland drying. Frontiers in Environmental Science 11.1153683 doi: 10.3389/fenvs.2023.1153683 (open access) *graduate students (PhD and MSc, respectively).
  • Sun, T., Lindo, Z., and Branfireun, B.A. 2023. Ground warming releases inorganic mercury and increases net methylmercury production in two boreal peatland types. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2023.1100443 (open access) 
  • Meehan, M.L.* and Lindo, Z. 2023. Mismatches in thermal performance between ectothermic predators and prey alter interaction strength and direction. Oecologia. 201: 1005–1015
    https://doi.org/10.1007/s00442-023-05372-3 *graduate student
  • Potapov, A.M., …<Lindo, Z.>… Scheu, S. 2023. Globally invariant metabolism but density-diversity mismatch in springtails. Nature Communications. 14: 674. https://doi.org/10.1038/s41467-023-36216-6 (open access)

2022

  • Buchkowski, R.*, Barel, J.M., Jassey, V.E.J., and Lindo, Z. 2022. Cannibalism has its limits in soil food webs. Soil Biology and Biochemistry 172: 108773. https://doi.org/10.1016/j.soilbio.2022.108773 *PDF
  • Meehan, M.L.*, Turnbull, K.F., Sinclair, B.J., and Lindo, Z. 2022. Predators minimize energy costs, not maximize energy gains when feeding under warming: Evidence from a microcosm experiment. Functional Ecology. DOI: 10.1111/1365-2435.14131
  • Kamath, D.*, Barreto, C.*, and Lindo, Z. 2022. Nematode contributions to the soil food web trophic structure of two contrasting boreal peatlands in Canada. Pedobiologia – Journal of Soil Ecology 93-94: 150809. https://doi.org/10.1016/j.pedobi.2022.150809 *Undergraduate and graduate student, respectively.
  • Potapov, A.M., …<Lindo, Z.>… and Wall, D.H. 2022. Global monitoring of soil animal communities using a common methodology. Soil Organisms 94: 55–68. DOI: 10.25674/so94iss1id178 (open access) 

2021

  • Barreto, C.*, Branfireun, B.A., McLaughlin, J., and Lindo, Z. 2021. Responses of oribatid mites to warming in boreal peatlands depend on fen type. Pedobiologia – Journal of Soil Ecology 89: 150772 (Virtual Special Issue on Response of Soil Biodiversity to Global Change). https://doi.org/10.1016/j.pedobi.2021.150772. *graduate student
  • De Castro F. …<Lindo, Z.>…Caruso, T. 2021. Local stability properties of complex, species-rich soil food webs with functional block structure. Ecology & Evolution 11: 16070–16081. http://doi.org/10.1002/ece3.8278. (open access)
  • Meehan, M.L.*, Caruso, T., and Lindo, Z. 2021. Short-term intensive warming shifts predator communities (Parasitiformes: Mesostigmata) in Boreal forest soils. Pedobiologia – Journal of Soil Ecology 87-88: 150742 (Virtual Special Issue on Response of Soil Biodiversity to Global Change). https://doi.org/10.1016/j.pedobi.2021.150742 *graduate student
  • Barreto, C.*, and Lindo, Z. 2021. Checklist of oribatid mites (Acari: Oribatida) from contrasting two boreal fens: an update on oribatid mites of Canadian peatlands. Systematic and Applied Acarology 26: 866–884. https://doi.org/10.11158/saa.26.5.4  *graduate student
  • Ramachandran, D., Lindo, Z., and Meehan M.L.* 2021. Feeding rate and efficiency in an apex soil predator exposed to short-term temperature changes. Basic and Applied Ecology 50: 87–96. DOI:10.1016/j.baae.2020.11.006 undergraduate student, *graduate student
  • Buchkowski, R.W.*, and Lindo, Z. 2021. Stoichiometric and structural uncertainty in soil food web models. Functional Ecology 35: 288–300. DOI:10.1111/1365-2435.13706 *Postdoctoral Fellow

2020

  • Meehan, M.L.*, Barreto, C.*, Turnbull, M.S.*, Bradley, R., Bellenger, J.-P., Darnajoux, R., and Lindo, Z. 2020. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia – Journal of Soil Ecology 83: 150672 - Virtual Special Issue on Response of Soil Biodiversity to Global Change. DOI:10.1016/j.pedobi.2020.150672. *graduate students
  • Barreto, C.*, and Lindo, Z. 2020. Armoured mites, beetle mites or moss mites: the fantastic world of Oribatida. Frontiers for Young Minds. 8: 545263. DOI: 10.3389/frym.2020.545263 (open access) *PhD student
  • Tian, J., Branfireun, B.A., and Lindo, Z. 2020. Climate change alters peatland carbon cycling through plant biomass allocation. Plant and Soil 455: 5364. DOI: 10.1007/s11104-020-04664
  • Barreto, C.R.A.*, Rillig, M., and Lindo, Z. 2020. Addition of polypropylene and polyester in soil affects decomposition rates but not microarthropod communities. Soil Organisms 92: 109–119. DOI: 10.25674/so92iss2pp109  (open access) *graduate student
  • Lindo, Z. 2020. Transoceanic dispersal of terrestrial species by debris rafting. Ecography 43: 1364–1372. DOI: 10.1111/ecog.05155  (open access)
  • Lyons, C.L.*, Branfireun, B.A., McLaughlin, J., and Lindo, Z. 2020. Climate warming increases plant community heterogeneity in boreal peatlands. Journal of Vegetation Science 31: 908–919. DOI: 10.1111/jvs.12912 *graduate student
  • Lyons, C.L.*, and Lindo, Z. 2020. Above- and belowground community linkages in boreal peatlands. Plant Ecology 221: 615–632. DOI:10.1007/s11258-020-01037-w (open access) *graduate student
  • Barreto, C.*, and Lindo, Z. 2020. Decomposition in peatlands: who are the players and what affects them? Frontiers for Young Minds. 8: 107. DOI:10.3389/frym.2020.00107 (open access) *PhD student
  • Jeliazkov, A., …<Lindo, Z.>…and Chase, J. 2020. CESTES - A global database for metaCommunity Ecology: Species, Traits, Environment and Space. Scientific Data 7: 6 DOI:10.1038/s41597-019-0344-7 
  • Purvis, E.E.N., Meehan, M.L.*, and Lindo, Z. Agricultural field margins provide food and nesting resources to bumble bees (Bombus spp., Hymenoptera: Apidae) in Southwestern Ontario, Canada. Insect Conservation and Diversity 13: 219–228. DOI: 10.1111/ICAD.12381 undergraduate student; *graduate student

2019

  • Powell, J.R., and Lindo, Z. 2019. A review of peer-review for Pedobiologia – Journal of Soil Ecology. Pedobiologia (editorial commentary) DOI: https://doi.org/10.1016/j.pedobi.2019.150588.
  • Behan-Pelletier, V.M., and Lindo, Z. 2019. Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska. Zootaxa 4666(1): 1-180. DOI: http://dx.doi.org/10.11646/zootaxa.4666.1.1
    (open access)
  • Geisen, S. Briones, M.J.I., Gan, H., Behan-Pelletier, V.M., Friman, V.-P., de Groot, G.A., Hannula, S.E., Lindo, Z., Philippot, L., Tiunov, A., & Wall, D.H. 2019. A methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry 136: 107536. https://doi.org/10.1016/j.soilbio.2019.107536.
  • Asemaninejad, A.*, Thorn, R.G., Branfireun, B.A., and Lindo, Z. 2019.  Vertical stratification of peatland microbial communities follows a gradient of functional types across hummock-hollow microtopographies. Écoscience 26: 249–258. DOI: 10.1080/11956860.2019.1595932. *graduate student
  • Krynak, E., Lindo, Z., and Yates, A. 2019. Patterns and drivers of stream benthic macroinvertebrate beta diversity in an agricultural landscape. Hydrobiologia 837: 61–75. https://doi.org/10.1007/s10750-019-3961-4
  • Beaulieu F., Knee, W., Nowell, V., Schwarzfeld, M., Lindo, Z., Behan-Pelletier, V., Lumley, L., Young, M., Smith, I., Proctor, H.C., Mironov, S.V., Galloway, T.D., Walter, D.E., and Lindquist, E.E. 2019. Acari of Canada. ZooKeys 819: 77–168. DOI: 10.3897/zookeys.819.28307.  Special issue as a Biota of Canada 150 initiative.

2018

  • Shackelford. N., Standish, R., Lindo, Z., and Starzomski, B. 2018. Landscape connectivity shifts resistance, resilience, and recovery uniquely in multi-trophic microarthropod communities. Ecology 99: 1164–1172. DOI: 10.1002/ecy.2196
  • Palozzi, J.E.*, and Lindo, Z. 2018. Are leaf litter and microbes team players? Interpreting home-field advantage decomposition dynamics. Soil Biology and Biochemistry 124: 189-198. DOI: 10.1016/j.soilbio.2018.06.018  *graduate student
  • Asemaninejad, A.*, Thorn, R.G., Branfireun, B.A., and Lindo, Z. 2018. Climate change favours specific fungal communities in Boreal peatlands. Soil Biology and Biochemistry 120: 28–36. DOI: 10.1016/j.soilbio.2018.01.029 *graduate student
  • Weston, D., <…> Lindo, Z., <…> and Shaw, J.A. 2018. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project. New Phytologist 217: 16-25. DOI: 10.1111/nph.14860
  • Lindo, Z. Diversity of Peloppiidae (Oribatida) in North America. Acarologia 58(S1): 91–97. DOI 10.24349/acarologia/20184282
  • Barreto, C.R.A.*, and Lindo, Z. 2018. Drivers of decomposition and detrital invertebrate communities differ across a hummock-hollow microtopology in boreal peatlands. Écoscience 25: 39-48. DOI: 10.1080/11956860.2017.1412282. *graduate student

2017

  • Palozzi, J.E.* and Lindo, Z. 2017. Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands Soil Biology & Biochemistry 117: 161-168. DOI: 10.1016/j.soilbio.2017.08.026 *graduate student
  • Palozzi, J.E.* and Lindo, Z. 2017. Boreal peat properties link to plant functional traits of ecosystem engineers. Plant and Soil 418: 277-291. DOI:10.1007/s11104-017-3291-0 *graduate student
  • Dieleman, C.M.*, Branfireun, B.A., and Lindo, Z. 2017. Northern peatland carbon dynamics driven by plant growth form — the role of graminoids. Plant and Soil 415: 25-35. doi:10.1007/s11104-016-3099-3 *graduate student
  • Eisenhauer, N., <…> Lindo, Z., <…> and Powell, J.R. 2017. Priorities for research in soil ecology. Pedobiologia 63: 1-7. DOI:10.1016/j.pedobi.2017.05.003
  • Asemaninejad, A.* Thorn, R.G., and Lindo, Z. 2017. Vertical distribution of fungi in hollows and hummocks of boreal peatlands. Fungal Ecology 27: 59-68. doi:10.1016/j.funeco.2017.02.002 *graduate student
  • Asemaninejad, A.* Thorn, R.G., and Lindo, Z. 2017. Experimental climate change modifies degradative succession in boreal peatland fungal communities. Molecular Ecology. 73: 521–531. doi:10.1007/s00248-016-0875-9 *graduate student
  • Lindo, Z. and Griffith, D.A.* 2017. Elevated atmospheric CO2 and warming stimulates growth and nitrogen fixation in a common forest floor cyanobacterium under axenic conditions. Forests 8: 73. doi:10.3390/f8030073. *graduate student (special issue on terrestrial cyanobacteria) 
  • Del Giudice, R.*, and Lindo, Z. 2017. Short-term leaching dynamics of three peatland plant species reveals how shifts in plant communities may affect decomposition processes. Geoderma 285: 110-116. doi:10.1016/j.geoderma.201609028 *graduate student

2016

  • Asemaninejad, A.*, Weerasuriya, N., Gloor, G.B., Lindo, Z., and Thorn, R.G. 2016. New primers for discovering fungal diversity using nuclear large ribosomal DNA. PLoS One 11(7): e0159043. doi:10.1371/journal.pone.0159043 *graduate student
  • Dieleman, C.M.*, Lindo, Z., McLaughlin, J.W., and Branfireun, B.A. 2016. Climate change effects on peatland decomposition and porewater dissolved organic carbon biogeochemistry. Biogeochemistry 128: 385–396. DOI 10.1007/s10533-016-0214-8. *graduate student
  • Dieleman, C.M.*, Branfireun, B.A., McLaughlin, J.W., and Lindo, Z. 2016. Enhanced carbon release under future climate conditions in a peatland mesocosm experiment: the role of phenolic compounds. Plant and Soil 400: 81-91. doi: 10.​1007/​s11104-015-2713-0. *graduate student
  • Darvill, R.*, and Lindo, Z. 2016. The inclusion of stakeholders and cultural ecosystem services in land management trade-off decisions using an ecosystem services approach. Landscape Ecology 31: 533-545. doi: 10.1007/s10980-015-0260-y. *graduate student

2015

  • Lindo, Z. 2015. Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biology and Biochemistry 91: 271-278. doi: 10.1016/j.soilbio.2015.09.003.
  • Ramirez, K.S., Döring, M., Eisenhauer, N., Gardi, C., Ladau, J., Leff, J.W., Lentendu, G., Lindo, Z., Rillig, M.C., Russell, D., Scheu, S., St. John, M.G., de Vries, F.T., Wubet, T., van der Putten, W.H., and Wall, D.H. 2015. Towards a global platform for linking soil biodiversity data. Frontiers in Ecology and Evolution 3:91. doi: 10.3389/fevo.2015.00091.
  • Desjardins, E., Barker, G., Lindo, Z., Dieleman, C.*, and Dussault, A. 2015. Promoting resilience. The Quarterly Review of Biology 92: 147-165. *graduate student
  • George, P.B.L.*, and Lindo, Z. 2015. Congruence of community structure between taxonomic identification and T-RFLP analyses in free-living soil nematodes. Pedobiologia 58: 113-117. *graduate student
  • Turnbull, M.S.*, and Lindo, Z. 2015. Combined effects of abiotic factors on Collembola communities reveal precipitation may act as a disturbance. Soil Biology and Biochemistry 82: 36-43. *graduate student
  • George, P.B.L.*, and Lindo, Z. 2015. Application of body size spectra to nematode trait-index analyses. Soil Biology and Biochemistry 84: 15-20. *graduate student
  • Lindo, Z. 2015. Linking functional traits and network structure to concepts of stability. Community Ecology 16: 48-54.
  • Dieleman, C.M.*, Branfireun B.A., McLaughlin, J.W., and Lindo, Z. 2015. Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability. Global Change Biology 21: 388-395.  *graduate student
  • Darvill, R.*, and Lindo, Z. 2015. Quantifying and mapping ecosystem service use across stakeholder groups: Implications for conservation with priorities for cultural values. Ecosystem Services 13: 153-161. (special issue on mapping ecosystem services) *graduate student
  • Lindo, Z. 2015. A rare new species of Metrioppia (Acari: Oribatida: Peloppiidae) from a Pacific Northwest temperate rainforest. The Canadian Entomologist 147: 553-563.

2014

  • Turnbull, M.S.*, George, P.B.L.*, and Lindo, Z. 2014. Weighing in: Size spectra as a standard tool in soil community analyses. Soil Biology and Biochemistry 68: 366-372*graduate students
  • Lindo, Z. 2014. Springtails (Hexapoda: Collembola) of the prairie grasslands of Canada. In: Cárcamo, H.A. and Giberson, D.J. (eds.), Arthropods of Canadian Grasslands (Volume 3): Biodiversity and Systematics Part 1. Biological Survey of Canada. pp. 191-198.

2013

  • Lindo, Z., Nilsson, M.-C., and Gundale, M. 2013. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Global Change Biology 19: 2022-2035.
  • Lindo, Z., and Winchester, N.N. 2013. Out on a limb: Microarthropod and microclimate variation in coastal temperate rainforest canopies. Insect Conservation & Diversity 6: 513-521.
  • Winchester, N.N., and Lindo, Z. 2013. Ancient coastal rainforest canopies in western Canada: issues in biodiversity and conservation. In: Lowman, M. et al. (eds.), Treetops at Risk - Challenges of Global Forest Canopies. Springer-Verlag. Chapter 38.
  • Henriques-Silva, R., Lindo, Z., and Peres-Neto, P.R. 2013. A community of metacommunities: exploring patterns in species distributions across large geographic areas. Ecology 94: 627-639.

2012

  • Lindo, Z., Whiteley, J., and Gonzalez, A. 2012. Traits explain community disassembly and trophic contraction following experimental environmental change. Global Change Biology 18: 2448-2457.
  • Huebner, K.*, Lindo, Z., and Lechowicz, M. 2012. Post-fire succession of collembolan communities in a northern hardwood forest. European Journal of Soil Biology 48: 59-65*undergraduate student

2011

  • Lindo, Z. 2011. Five new species of Ceratoppia (Acari: Oribatida: Peloppiidae) from western North America. Zootaxa 3036: 1-25.
  • Chisholm, C.*, Lindo, Z., and Gonzalez, A. 2011. Metacommunity diversity depends on connectivity and patch arrangement in heterogeneous habitat networks. Ecography34: 415-424. *undergraduate student
  • Lindo, Z., and Whiteley, J.A. 2011. Old trees contribute bio-available nitrogen through canopy bryophytes. Plant and Soil 342: 141-148.
  • Lindo, Z. 2011. Canopy organisms and forest floor associations. In: Stevenson, S.K. et al. (eds.), British Columbia’s Inland Rainforest: Ecology, Conservation, and Management. UBC Press.
  • Gonzalez, A., Rayfield, B., and Lindo, Z. 2011. The disentangled bank: how habitat loss fragments and disassembles ecological networks. American Journal of Botany 98: 503-516 (special issue).

2010 - 2003

  • Lindo, Z., and Gonzalez, A. 2010. The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13: 612-627
  • Staddon, P., Lindo, Z., Crittenden, P.D., Gilbert, F., and Gonzalez, A. 2010. Connectivity, non-random extinction, and ecosystem function in experimental metacommunities. Ecology Letters 13: 543-552.
  • Lindo, Z., Clayton, M., and Behan-Pelletier, V.M. 2010. Systematics and ecology of the genus Dendrozetes (Acari: Oribatida: Peloppiidae) from arboreal habitats in Western North America. Zootaxa 2403: 10-22.
  • Lindo, Z. 2010. Communities of Oribatida associated with litter input in western redcedar tree crowns: Are moss mats ‘magic carpets’ for oribatid mite dispersal? In: Sabelis, M.W. and Bruin, J. (eds.), Trends in Acarology: Proceedings 12th International Congress of Acarology, p 143-148.
  • Lindo, Z., and Winchester, N.N. 2009. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160: 817-825.
  • Lindo, Z., Clayton, M., and Behan-Pelletier, V.M. 2008. Systematics and ecology of Anachipteria geminus sp. nov. (Acari: Oribatida: Achipteria) from arboreal lichens from Western North America. The Canadian Entomologist 140: 539-556.
  • Lindo, Z., Winchester, N.N., and Didham, R.K. 2008. Nested patterns of community assembly in the colonisation of artificial canopy habitats by oribatid mites. Oikos 117: 1856-1864.
  • Winchester, N.N., Lindo, Z., and Behan-Pelletier, V.M. 2008. Oribatid mite communities in the canopy of montane Abies amabilis and Tsuga heterophylla trees on Vancouver Island, British Columbia. Environmental Entomology 37: 464-471.
  • Lindo, Z., and Winchester, N.N. 2008. Scale dependent diversity patterns in arboreal and terrestrial oribatid mite (Acari: Oribatida) communities. Ecography 31: 53-60.
  • Lindo, Z., and Stevenson, S.K. 2007. Diversity and distribution of oribatid mites (Acari: Oribatida) associated with arboreal and terrestrial habitats in Interior Cedar-Hemlock forests, British Columbia, Canada. Northwest Science 81: 305-315.
  • Lindo, Z., and Winchester, N.N. 2007. Local-regional boundary shifts in oribatid mite (Acari: Oribatida) communities: species-area relationships in arboreal habitat islands of a coastal temperate rain forest, Vancouver Island, Canada. Journal of Biogeography 34: 1611-1621.
  • Lindo, Z., and Winchester, N.N. 2007. Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western redcedar forests, Vancouver Island, Canada. Soil Biology and Biochemistry 39: 2957-2966.
  • Lindo, Z., and Winchester, N.N. 2007. Resident corticolous oribatid mites (Acari: Oribatida):  Decay in community similarity with vertical distance from the ground. Écoscience 14: 223-229.
  • Lindo, Z., and Winchester, N.N. 2006. A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western redcedar trees. Pedobiologia 50: 31-41.
  • Lindo, Z., and Visser, S. 2004. Forest floor microarthropod abundance and oribatid mite (Acari: Oribatida) composition following partial and clear-cut harvesting in the mixed-wood boreal forest. Canadian Journal of Forest Research 34: 998-1006.
  • Lindo, Z., and Visser, S. 2003. Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Canadian Journal of Forest Research 33: 1610-1620.