Apo-S100A11

Review Articles and Commentaries

Spratt, D.E., Walden, H. & Shaw, G.S. (2014) RBR E3 Ubiquitin Ligases - New Structures, New Insights, New Questions. Biochemical J. 458, 421-437. PDF

Shaw, G.S. (2014) Switching on Ubiquitination by Phosphorylating a Ubiquitous Activator. Biochemical J. 460, e1-e3. Commentary

Dempsey B.R., Rintala-Dempsey A.C. & Shaw G.S. (2012) S100 Calcium-Binding Protein. Encyclopedia of Signalling Molecules. S. Choi (ed.) pp 1711-1717. PDF

Rezvanpour A. & Shaw G.S. (2009) Unique S100 Target Protein Interactions. Gen. Physiol. Biophys. 28, 39-46. PDF

Rintala-Dempsey A.C., Rezvanpour A. & Shaw G.S. (2008) S100-annexin complexes - structural insights. FEBS J. 275, 4956-4966. PDF

Santamaria-Kisiel L., Rintala-Dempsey A.C. & Shaw G.S. (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem. J. 396, 201-214. PDF


Mechanisms of Protein Ubiquitination in Health and Parkinson's Disease (selected publications)

Link to all Protein Interaction publications

Kumar, A., Chaugule, V., Condos, T.E.C., Barber, K.R., Johnson, C., Toth, R., Sundaramoorthy, R., Knebel, A., Shaw, G.S. & Walden, H. (2017) Parkin-phosphoubiquitin Complex Reveals a Cryptic Ubiquitin Binding Site Required for RBR Ligase Activity. Nature Str. Mol. Biol. 24, 475-483 Online version

Aguirre, J.D., Dunkerley, K., Mercier, P. & Shaw, G.S. (2017) Structure of Phosphorylated UBL Domain and Insights into PINK1-orchestrated Parkin Activation. Proc. Nat. Acad. Sci. 114, 298-303. Online version

George, S., Aguirre, J.D., Spratt, D.E., Bi, Y., Jeffrey, M., Shaw, G.S. & O'Donoghue, P. (2016) Generation of Phospho-ubiquitin Variants by Orthogonal Translation Reveals Codon Skipping. FEBS Letts. 590, 1530-1542. Online version

Wu, K., Chong, R.A., Yu, Q., Bai, J., Spratt, D.E., Ching, K., Lee, C., Miao, H., Tappin, I., Hurwitz, J., Zheng, N., Shaw, G.S., Sun, Y., Felsenfeld, D.P., Sanchez, R., Zheng, J-N. & Pan, Z-Q (2016) Suramin Inhibits Cullin-RING E3 Ligases. Proc. Natl. Acad. Sci. 113, E2011-2018 Online version

Kumar, A., Aguirre, J.D., Condos, T.E.C., Martinex-Torres, R.J., Chaugule, V.K., Toth, R., Sundaramoorthy, R., Mercier, P., Knebel, A., Spratt, D.E., Barber, K.R., Shaw, G.S. & Walden, H. (2015) Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. Online version

Chong, R.A., Wu, K., Spratt, D.E., Yang, Y., Lee, C., Nayak, J., Xu, M., Elkholi, R., Tappin, I., Li, J., Hurwitz, J., Brown, B.D., Chipuk, J.E., Chen, Z., Sanchez, R., Shaw, G.S., Huang, L. & Pan, Z-Q (2014) Pivotal Role for the Ubiquitin Y59-E51 Loop in Lysine-48 Polyubiquitination. Proc. Natl. Acad. Sci. 111, 8434-8439. Pubmed

Grishin, A., Condos, T.E.C., Barber, K.R. Campbell-Valois, F.X., Parsot, C., Shaw, G.S. & Cygler, M. (2014) Structural Basis for the Inhibition of Host Protein Ubiquitination by Shigella Effector Kinase OspG. Structure 22, 878-888. Pubmed

Kovacev, J., Wu, K., Spratt, D.E., Nayak, J., Shaw, G.S. & Pan, Z-Q (2014) A Snapshop of Ubiquitin Chain Elongation: Lysine-48 Tetra-ubiquitin Slows Down Ubiquitination. J. Biol. Chem. 289. 7068-7081. PDF

Bai J.J., Safadi S.S., Mercier P., Barber K.R. & Shaw G.S (2013) Ataxin-3 Is a Multivalent Ligand for the Parkin Ub Domain. Biochemistry DOI: 10.1021/bi400780v PDF

Spratt D.E., Mercier P. & Shaw G.S. (2013) Structure of the HHARI Catalytic Domain Shows Glimpses of a HECT E3 Ligase. PLoS ONE 8(8): e74047. PDF

Spratt D.E., Martinez-Torres R.J., Noh Y.J., Mercier P., Manczyk N., Barber K.R., Aguirre J.D., Burchell L., Purkiss A., Walden H. & Shaw G.S. (2013) A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nature Commun. 4:1983. PDF

Cook B.W. & Shaw G.S. (2012) Architecture of the catalytic HPN motif is conserved in all E2 conjugating enzymes. Biochem. J. 445, 167-174. PDF

Beasley S.A., Safadi S.S., Barber K.R. & Shaw G.S. (2012) Solution structure of the E3 ligase HOIL-1 Ubl domain. Protein Sci. 21, 1085-1092. PDF

Spratt D.E., Wu K., Kovacev J., Pan Z.Q. & Shaw G.S. (2012) Selective recruitment of an E2~ubiquitin complex by an E3 ubiquitin ligase. J. Biol. Chem. 287, 17374-17385. PDF

Chaugule V.K., Burchell L., Barber K.R., Sidhu A., Leslie S.J., Shaw G.S. & Walden H. (2011) Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853-2867. PDF

Safadi S.S., Barber K.R. & Shaw G.S. (2011) Impact of autosomal recessive juvenile Parkinson's disease mutations on the structure and interactions of the parkin ubiquitin-like domain. Biochemistry 50, 2603-2610. Pubmed

Spratt D.E. & Shaw G.S. (2011) Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin. J Mol Biol. 407, 425-438. Pubmed

Serniwka S.A., & Shaw G.S. (2009) Structure of the UbcH8-ubiquitin complex shows a unique ubiquitin interaction site. Biochemistry 48, 12169-12179. Pubmed

Safadi S.S. & Shaw G.S. (2009) Differential interaction of the E3 ligase parkin with the proteasomal subunit S5a and the endocytic protein Eps15. J. Biol. Chem. 285, 1424-1434. Pubmed

Hristova V.A., Beasley S.A., Rylett R.J. & Shaw G.S. (2009) Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile parkinson's related E3 ligase parkin. J. Biol. Chem. 284, 14978-14986. Pubmed

Serniwka S.A., & Shaw G.S. (2008) 1H, 13C and 15N resonance assignments for the human E2 conjugating enzyme, UbcH7. Biomol. NMR Assign. 2, 21-23. Pubmed

Safadi S.S. & Shaw G.S. (2007) A disease state mutation unfolds the parkin ubiquitin-like domain. Biochemistry 46, 14162-14169. Pubmed

Beasley S.A., Hristova V.A. & Shaw G.S. (2007) Structure of the Parkin in-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson’s disease. PNAS 104, 3095-3100. Pubmed

Merkley N., Barber K.R. & Shaw G.S. (2005) Ubiquitin Manipulation by an E2 Conjugating Enzyme Using a Novel Covalent Intermediate. J. Biol. Chem. 280, 31732-31738. Pubmed

Merkley N. & Shaw G.S. (2004) Solution Structure of the Flexible Class II Ubiquitin-Conjugating Enzyme Ubc1 Provides Insights for Polyubiquitin Chain Assembly. J. Biol. Chem. 279, 47139-47147. Pubmed


Mechanisms of Membrane Repair and Trafficking by S100 Proteins (selected publications)

Link to all Calcium-binding Protein publications

Dempsey B.R., Rezvanpour A., Lee T.W., Barber K.R., Junop M.S. & Shaw G.S. (2012) Structure of an Asymmetric Ternary Protein Complex Provides Insight for Membrane Interaction. Structure 2012 Aug 28. [Epub ahead of print]. PDF

Rezvanpour A., Santamaria-Kisiel L. & Shaw G.S. (2011) The S100A10-annexin A2 complex provides a novel asymmetric platform for membrane repair. J. Biol. Chem. 286, 40174-40183. PDF

Dempsey B.R & Shaw G.S. (2011) Identification of calcium-independent and calcium-enhanced binding between S100B and the dopamine D2 receptor. Biochemistry 50, 9056-9065. Pubmed

Stocks B.B., Rezvanpour A., Shaw G.S. & Konermann L. (2011) Temporal Development of Protein Structure during S100A11 Folding and Dimerization Probed by Oxidative Labeling and Mass Spectrometry. J Mol Biol. 409, 669-679. Pubmed

Santamaria-Kisiel L. & Shaw GS. (2011) Identification of regions responsible for the open conformation of S100A10 using chimaeric S100A11-S100A10 proteins. Biochem J. 434, 37-48. Pubmed

Marlatt N.M., Spratt D.E. & Shaw G.S. (2010) Codon optimization for enhanced Escherichia coli expression of human S100A11 and S100A1 proteins. Protein Expr. Purif. 73, 58-64. Pubmed

Rezvanpour A., Phillips J.M. & Shaw G.S. (2009) Design of high-affinity S100-target hybrid proteins. Protein Sci.18, 2528-2536. Pubmed

Marlatt N.M., Boys B.L., Konermann L. & Shaw G.S. (2009) Formation of Monomeric S100B and S100A11 Proteins at Low Ionic Strength (dagger). Biochemistry 48, 1954-1963. Pubmed

Shaw G.S., Marlatt N.M., Ferguson P.L., Barber K.R. & Bottomley S.P. (2008) Identification of a dimeric intermediate in the unfolding pathway for the calcium-binding protein S100B. J. Mol. Biol. 382, 1075-1088. Pubmed

Malik S., Revington M., Smith S.P. & Shaw G.S. (2008) Analysis of the structure of human apo-S100B at low temperature indicates a unimodal conformational distribution is adopted by calcium-free S100 proteins. Proteins 73, 28-42. Pubmed

Marlatt N.M. & Shaw G.S. (2007) Amide exchange shows calcium-induced conformational changes are transmitted to the dimer interface of S100B. Biochemistry 46, 7478-7487. Pubmed

Rintala-Dempsey A.C., Santamaria-Kisiel L., Liao Y., Lajoie G. & Shaw G.S. (2006) Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2. Biochemistry 45, 14695 -14705. Pubmed

Pan J., Rintala-Dempsey A.C., Li Y., Shaw G.S. & Konermann L. (2006) Folding Kinetics of the S100A11 Protein Dimer Studied by Time-Resolved Electrospray Mass Spectrometry and Pulsed Hydrogen-Deuterium Exchange. Biochemistry 45, 3005 -3013. Pubmed



Shaw Lab | Biochemistry Research Page | University of Western Ontario